Macrospin resonance and giant magnetoimpedance effect in Fe3O4 nanoparticles observed at high frequency and low magnetic field

In the present work we report the spin resonance and giant magnetoimpedance(GMI) effect in cold pressed Fe3O4 measured with a copper stripcoil at high frequency and low magnetic fields. The AC magnetoresistance of bulk Fe3O4 was measured at room temperature using an impedance analyzer by applying fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Swetha, A. K., Mallikarjun, R., Joshi, Rajeev S.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2995
creator Swetha, A. K.
Mallikarjun, R.
Joshi, Rajeev S.
description In the present work we report the spin resonance and giant magnetoimpedance(GMI) effect in cold pressed Fe3O4 measured with a copper stripcoil at high frequency and low magnetic fields. The AC magnetoresistance of bulk Fe3O4 was measured at room temperature using an impedance analyzer by applying frequencies of the order of 100 Hz to 5.5 MHz. The high frequency AC magnetoresistance and magnetic field derivative of the electromagnetic power absorbed (dP/dH) were measured indirectly via the stripcoil for frequencies from 10 kHz to 18 GHz, as the DC magnetic field was swept from 0 to 500 G. A giant low-field AC positive magnetoresistance (~44%) was found in a magnetic field of 105 G at 1.5 GHz. The investigation inferred that magnetic field dependence of the electrical resistance in cold pressed Fe3O4 is due to spin current driven effects. An abrupt increase in the value of MR was observed at a particular applied DC magnetic field and a shift in position of the resonance field of the stripcoil indicated the generation of spin current, established by Kittle’s theory of spin wave propagation. These observations provide a basis to develop a low field high frequency spinwave devices using the Fe3O4 nanoparticles.
doi_str_mv 10.1063/5.0178150
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2913522571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913522571</sourcerecordid><originalsourceid>FETCH-LOGICAL-p630-ca15c5ec63770b0b2da052db4f0c4f1e8c29e9fc6d702b3092f0ca4e2c25144f3</originalsourceid><addsrcrecordid>eNotkD1PwzAQhi0EEqUw8A8ssSGl-DNuRlRRQCrq0oEtcpxz6yq1g-2CuvDbCW2nG97nnju9CN1TMqGk5E9yQqiaUkku0IhKSQtV0vISjQipRMEE_7xGNyltCWGVUtMR-v3QJobUO48jpOC1N4C1b_HaaZ_xTq895OB2PbTHCKwFk_GAz4EvBR4WQq9jdqaDhEOTIH5Di3XGG7feYBvhaw_eHI7OLvycjc5g66Brb9GV1V2Cu_Mco9X8ZTV7KxbL1_fZ86LoS04Ko6k0EkzJlSINaViriWRtIywxwlKYGlZBZU3ZKsIaTio2BFoAM0xSISwfo4eTto9h-Cflehv20Q8Xa1ZRLhmTig7U44lKxmWdXfB1H91Ox0NNSf1fby3rc738D2TLbio</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2913522571</pqid></control><display><type>conference_proceeding</type><title>Macrospin resonance and giant magnetoimpedance effect in Fe3O4 nanoparticles observed at high frequency and low magnetic field</title><source>Scitation (American Institute of Physics)</source><creator>Swetha, A. K. ; Mallikarjun, R. ; Joshi, Rajeev S.</creator><contributor>Udupa, D. V. ; Tyagi, Mohit ; Mishra, Ajay Kumar ; Rout, Sanjeeb Kumar</contributor><creatorcontrib>Swetha, A. K. ; Mallikarjun, R. ; Joshi, Rajeev S. ; Udupa, D. V. ; Tyagi, Mohit ; Mishra, Ajay Kumar ; Rout, Sanjeeb Kumar</creatorcontrib><description>In the present work we report the spin resonance and giant magnetoimpedance(GMI) effect in cold pressed Fe3O4 measured with a copper stripcoil at high frequency and low magnetic fields. The AC magnetoresistance of bulk Fe3O4 was measured at room temperature using an impedance analyzer by applying frequencies of the order of 100 Hz to 5.5 MHz. The high frequency AC magnetoresistance and magnetic field derivative of the electromagnetic power absorbed (dP/dH) were measured indirectly via the stripcoil for frequencies from 10 kHz to 18 GHz, as the DC magnetic field was swept from 0 to 500 G. A giant low-field AC positive magnetoresistance (~44%) was found in a magnetic field of 105 G at 1.5 GHz. The investigation inferred that magnetic field dependence of the electrical resistance in cold pressed Fe3O4 is due to spin current driven effects. An abrupt increase in the value of MR was observed at a particular applied DC magnetic field and a shift in position of the resonance field of the stripcoil indicated the generation of spin current, established by Kittle’s theory of spin wave propagation. These observations provide a basis to develop a low field high frequency spinwave devices using the Fe3O4 nanoparticles.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0178150</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Giant magnetoimpedance ; High frequencies ; Iron oxides ; Low temperature resistance ; Magnetic fields ; Magnetoimpedance ; Magnetoresistance ; Magnetoresistivity ; Magnons ; Nanoparticles ; Room temperature ; Spin resonance ; Spintronics ; Wave propagation</subject><ispartof>AIP conference proceedings, 2024, Vol.2995 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0178150$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Udupa, D. V.</contributor><contributor>Tyagi, Mohit</contributor><contributor>Mishra, Ajay Kumar</contributor><contributor>Rout, Sanjeeb Kumar</contributor><creatorcontrib>Swetha, A. K.</creatorcontrib><creatorcontrib>Mallikarjun, R.</creatorcontrib><creatorcontrib>Joshi, Rajeev S.</creatorcontrib><title>Macrospin resonance and giant magnetoimpedance effect in Fe3O4 nanoparticles observed at high frequency and low magnetic field</title><title>AIP conference proceedings</title><description>In the present work we report the spin resonance and giant magnetoimpedance(GMI) effect in cold pressed Fe3O4 measured with a copper stripcoil at high frequency and low magnetic fields. The AC magnetoresistance of bulk Fe3O4 was measured at room temperature using an impedance analyzer by applying frequencies of the order of 100 Hz to 5.5 MHz. The high frequency AC magnetoresistance and magnetic field derivative of the electromagnetic power absorbed (dP/dH) were measured indirectly via the stripcoil for frequencies from 10 kHz to 18 GHz, as the DC magnetic field was swept from 0 to 500 G. A giant low-field AC positive magnetoresistance (~44%) was found in a magnetic field of 105 G at 1.5 GHz. The investigation inferred that magnetic field dependence of the electrical resistance in cold pressed Fe3O4 is due to spin current driven effects. An abrupt increase in the value of MR was observed at a particular applied DC magnetic field and a shift in position of the resonance field of the stripcoil indicated the generation of spin current, established by Kittle’s theory of spin wave propagation. These observations provide a basis to develop a low field high frequency spinwave devices using the Fe3O4 nanoparticles.</description><subject>Giant magnetoimpedance</subject><subject>High frequencies</subject><subject>Iron oxides</subject><subject>Low temperature resistance</subject><subject>Magnetic fields</subject><subject>Magnetoimpedance</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Magnons</subject><subject>Nanoparticles</subject><subject>Room temperature</subject><subject>Spin resonance</subject><subject>Spintronics</subject><subject>Wave propagation</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkD1PwzAQhi0EEqUw8A8ssSGl-DNuRlRRQCrq0oEtcpxz6yq1g-2CuvDbCW2nG97nnju9CN1TMqGk5E9yQqiaUkku0IhKSQtV0vISjQipRMEE_7xGNyltCWGVUtMR-v3QJobUO48jpOC1N4C1b_HaaZ_xTq895OB2PbTHCKwFk_GAz4EvBR4WQq9jdqaDhEOTIH5Di3XGG7feYBvhaw_eHI7OLvycjc5g66Brb9GV1V2Cu_Mco9X8ZTV7KxbL1_fZ86LoS04Ko6k0EkzJlSINaViriWRtIywxwlKYGlZBZU3ZKsIaTio2BFoAM0xSISwfo4eTto9h-Cflehv20Q8Xa1ZRLhmTig7U44lKxmWdXfB1H91Ox0NNSf1fby3rc738D2TLbio</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Swetha, A. K.</creator><creator>Mallikarjun, R.</creator><creator>Joshi, Rajeev S.</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240112</creationdate><title>Macrospin resonance and giant magnetoimpedance effect in Fe3O4 nanoparticles observed at high frequency and low magnetic field</title><author>Swetha, A. K. ; Mallikarjun, R. ; Joshi, Rajeev S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p630-ca15c5ec63770b0b2da052db4f0c4f1e8c29e9fc6d702b3092f0ca4e2c25144f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Giant magnetoimpedance</topic><topic>High frequencies</topic><topic>Iron oxides</topic><topic>Low temperature resistance</topic><topic>Magnetic fields</topic><topic>Magnetoimpedance</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Magnons</topic><topic>Nanoparticles</topic><topic>Room temperature</topic><topic>Spin resonance</topic><topic>Spintronics</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Swetha, A. K.</creatorcontrib><creatorcontrib>Mallikarjun, R.</creatorcontrib><creatorcontrib>Joshi, Rajeev S.</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Swetha, A. K.</au><au>Mallikarjun, R.</au><au>Joshi, Rajeev S.</au><au>Udupa, D. V.</au><au>Tyagi, Mohit</au><au>Mishra, Ajay Kumar</au><au>Rout, Sanjeeb Kumar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Macrospin resonance and giant magnetoimpedance effect in Fe3O4 nanoparticles observed at high frequency and low magnetic field</atitle><btitle>AIP conference proceedings</btitle><date>2024-01-12</date><risdate>2024</risdate><volume>2995</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In the present work we report the spin resonance and giant magnetoimpedance(GMI) effect in cold pressed Fe3O4 measured with a copper stripcoil at high frequency and low magnetic fields. The AC magnetoresistance of bulk Fe3O4 was measured at room temperature using an impedance analyzer by applying frequencies of the order of 100 Hz to 5.5 MHz. The high frequency AC magnetoresistance and magnetic field derivative of the electromagnetic power absorbed (dP/dH) were measured indirectly via the stripcoil for frequencies from 10 kHz to 18 GHz, as the DC magnetic field was swept from 0 to 500 G. A giant low-field AC positive magnetoresistance (~44%) was found in a magnetic field of 105 G at 1.5 GHz. The investigation inferred that magnetic field dependence of the electrical resistance in cold pressed Fe3O4 is due to spin current driven effects. An abrupt increase in the value of MR was observed at a particular applied DC magnetic field and a shift in position of the resonance field of the stripcoil indicated the generation of spin current, established by Kittle’s theory of spin wave propagation. These observations provide a basis to develop a low field high frequency spinwave devices using the Fe3O4 nanoparticles.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0178150</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2995 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2913522571
source Scitation (American Institute of Physics)
subjects Giant magnetoimpedance
High frequencies
Iron oxides
Low temperature resistance
Magnetic fields
Magnetoimpedance
Magnetoresistance
Magnetoresistivity
Magnons
Nanoparticles
Room temperature
Spin resonance
Spintronics
Wave propagation
title Macrospin resonance and giant magnetoimpedance effect in Fe3O4 nanoparticles observed at high frequency and low magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Macrospin%20resonance%20and%20giant%20magnetoimpedance%20effect%20in%20Fe3O4%20nanoparticles%20observed%20at%20high%20frequency%20and%20low%20magnetic%20field&rft.btitle=AIP%20conference%20proceedings&rft.au=Swetha,%20A.%20K.&rft.date=2024-01-12&rft.volume=2995&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0178150&rft_dat=%3Cproquest_scita%3E2913522571%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913522571&rft_id=info:pmid/&rfr_iscdi=true