Methods for determining the resources needed to create MapReduce computational models
A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the w...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2969 |
creator | Urazmatov, Tokhir Kuzibaev, Khudaysukur Otamuratov, Khurmatbek Gulomov, Azizbek |
description | A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models. |
doi_str_mv | 10.1063/5.0190710 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2913522441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913522441</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1680-884157a0120f7534972c07b30a04395c7634dd34db0a6c44b3ae54a213361873</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTD13jwmM0spvqBFkAruhjS5tVM6kzFJF_57R9rF4WwOh4-PsVuEGUIpH_QMsAaDcMYmqDUWpsTynE0AalUIJb8u2VVKOwBRG1NN2OeS8jb4xDchck-ZYtf2bf_N85Z4pBQO0VHiPZEnz3PgLpLNxJd2-CB_cMRd6IZDtrkNvd3zLnjap2t2sbH7RDennrLV89Nq_los3l_e5o-LYsCygqKqFGpjAQVsjJaqNsKBWUuwoGStnSml8n7MGmzplFpLS1pZgVKWWBk5ZXfH2yGGnwOl3OxG3hEjNaJGqYVQCsfV_XGVXHvkbIbYdjb-NgjNv7VGNydr8g-rhF1m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2913522441</pqid></control><display><type>conference_proceeding</type><title>Methods for determining the resources needed to create MapReduce computational models</title><source>AIP Journals Complete</source><creator>Urazmatov, Tokhir ; Kuzibaev, Khudaysukur ; Otamuratov, Khurmatbek ; Gulomov, Azizbek</creator><contributor>Kovalev, Igor ; Voroshilova, Anna</contributor><creatorcontrib>Urazmatov, Tokhir ; Kuzibaev, Khudaysukur ; Otamuratov, Khurmatbek ; Gulomov, Azizbek ; Kovalev, Igor ; Voroshilova, Anna</creatorcontrib><description>A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0190710</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Distributed processing ; Flow mapping ; Linearity ; Mathematical models ; Parameters ; Problem solving</subject><ispartof>AIP conference proceedings, 2024, Vol.2969 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0190710$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4509,23928,23929,25138,27922,27923,76154</link.rule.ids></links><search><contributor>Kovalev, Igor</contributor><contributor>Voroshilova, Anna</contributor><creatorcontrib>Urazmatov, Tokhir</creatorcontrib><creatorcontrib>Kuzibaev, Khudaysukur</creatorcontrib><creatorcontrib>Otamuratov, Khurmatbek</creatorcontrib><creatorcontrib>Gulomov, Azizbek</creatorcontrib><title>Methods for determining the resources needed to create MapReduce computational models</title><title>AIP conference proceedings</title><description>A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models.</description><subject>Distributed processing</subject><subject>Flow mapping</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Problem solving</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTD13jwmM0spvqBFkAruhjS5tVM6kzFJF_57R9rF4WwOh4-PsVuEGUIpH_QMsAaDcMYmqDUWpsTynE0AalUIJb8u2VVKOwBRG1NN2OeS8jb4xDchck-ZYtf2bf_N85Z4pBQO0VHiPZEnz3PgLpLNxJd2-CB_cMRd6IZDtrkNvd3zLnjap2t2sbH7RDennrLV89Nq_los3l_e5o-LYsCygqKqFGpjAQVsjJaqNsKBWUuwoGStnSml8n7MGmzplFpLS1pZgVKWWBk5ZXfH2yGGnwOl3OxG3hEjNaJGqYVQCsfV_XGVXHvkbIbYdjb-NgjNv7VGNydr8g-rhF1m</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Urazmatov, Tokhir</creator><creator>Kuzibaev, Khudaysukur</creator><creator>Otamuratov, Khurmatbek</creator><creator>Gulomov, Azizbek</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240112</creationdate><title>Methods for determining the resources needed to create MapReduce computational models</title><author>Urazmatov, Tokhir ; Kuzibaev, Khudaysukur ; Otamuratov, Khurmatbek ; Gulomov, Azizbek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1680-884157a0120f7534972c07b30a04395c7634dd34db0a6c44b3ae54a213361873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distributed processing</topic><topic>Flow mapping</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Problem solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urazmatov, Tokhir</creatorcontrib><creatorcontrib>Kuzibaev, Khudaysukur</creatorcontrib><creatorcontrib>Otamuratov, Khurmatbek</creatorcontrib><creatorcontrib>Gulomov, Azizbek</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urazmatov, Tokhir</au><au>Kuzibaev, Khudaysukur</au><au>Otamuratov, Khurmatbek</au><au>Gulomov, Azizbek</au><au>Kovalev, Igor</au><au>Voroshilova, Anna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Methods for determining the resources needed to create MapReduce computational models</atitle><btitle>AIP conference proceedings</btitle><date>2024-01-12</date><risdate>2024</risdate><volume>2969</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0190710</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2024, Vol.2969 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2913522441 |
source | AIP Journals Complete |
subjects | Distributed processing Flow mapping Linearity Mathematical models Parameters Problem solving |
title | Methods for determining the resources needed to create MapReduce computational models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Methods%20for%20determining%20the%20resources%20needed%20to%20create%20MapReduce%20computational%20models&rft.btitle=AIP%20conference%20proceedings&rft.au=Urazmatov,%20Tokhir&rft.date=2024-01-12&rft.volume=2969&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0190710&rft_dat=%3Cproquest_scita%3E2913522441%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913522441&rft_id=info:pmid/&rfr_iscdi=true |