Methods for determining the resources needed to create MapReduce computational models

A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Urazmatov, Tokhir, Kuzibaev, Khudaysukur, Otamuratov, Khurmatbek, Gulomov, Azizbek
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2969
creator Urazmatov, Tokhir
Kuzibaev, Khudaysukur
Otamuratov, Khurmatbek
Gulomov, Azizbek
description A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models.
doi_str_mv 10.1063/5.0190710
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2913522441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913522441</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1680-884157a0120f7534972c07b30a04395c7634dd34db0a6c44b3ae54a213361873</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKsL_0HAnTD13jwmM0spvqBFkAruhjS5tVM6kzFJF_57R9rF4WwOh4-PsVuEGUIpH_QMsAaDcMYmqDUWpsTynE0AalUIJb8u2VVKOwBRG1NN2OeS8jb4xDchck-ZYtf2bf_N85Z4pBQO0VHiPZEnz3PgLpLNxJd2-CB_cMRd6IZDtrkNvd3zLnjap2t2sbH7RDennrLV89Nq_los3l_e5o-LYsCygqKqFGpjAQVsjJaqNsKBWUuwoGStnSml8n7MGmzplFpLS1pZgVKWWBk5ZXfH2yGGnwOl3OxG3hEjNaJGqYVQCsfV_XGVXHvkbIbYdjb-NgjNv7VGNydr8g-rhF1m</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2913522441</pqid></control><display><type>conference_proceeding</type><title>Methods for determining the resources needed to create MapReduce computational models</title><source>AIP Journals Complete</source><creator>Urazmatov, Tokhir ; Kuzibaev, Khudaysukur ; Otamuratov, Khurmatbek ; Gulomov, Azizbek</creator><contributor>Kovalev, Igor ; Voroshilova, Anna</contributor><creatorcontrib>Urazmatov, Tokhir ; Kuzibaev, Khudaysukur ; Otamuratov, Khurmatbek ; Gulomov, Azizbek ; Kovalev, Igor ; Voroshilova, Anna</creatorcontrib><description>A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0190710</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Distributed processing ; Flow mapping ; Linearity ; Mathematical models ; Parameters ; Problem solving</subject><ispartof>AIP conference proceedings, 2024, Vol.2969 (1)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0190710$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,794,4509,23928,23929,25138,27922,27923,76154</link.rule.ids></links><search><contributor>Kovalev, Igor</contributor><contributor>Voroshilova, Anna</contributor><creatorcontrib>Urazmatov, Tokhir</creatorcontrib><creatorcontrib>Kuzibaev, Khudaysukur</creatorcontrib><creatorcontrib>Otamuratov, Khurmatbek</creatorcontrib><creatorcontrib>Gulomov, Azizbek</creatorcontrib><title>Methods for determining the resources needed to create MapReduce computational models</title><title>AIP conference proceedings</title><description>A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models.</description><subject>Distributed processing</subject><subject>Flow mapping</subject><subject>Linearity</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Problem solving</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkEtLAzEUhYMoWKsL_0HAnTD13jwmM0spvqBFkAruhjS5tVM6kzFJF_57R9rF4WwOh4-PsVuEGUIpH_QMsAaDcMYmqDUWpsTynE0AalUIJb8u2VVKOwBRG1NN2OeS8jb4xDchck-ZYtf2bf_N85Z4pBQO0VHiPZEnz3PgLpLNxJd2-CB_cMRd6IZDtrkNvd3zLnjap2t2sbH7RDennrLV89Nq_los3l_e5o-LYsCygqKqFGpjAQVsjJaqNsKBWUuwoGStnSml8n7MGmzplFpLS1pZgVKWWBk5ZXfH2yGGnwOl3OxG3hEjNaJGqYVQCsfV_XGVXHvkbIbYdjb-NgjNv7VGNydr8g-rhF1m</recordid><startdate>20240112</startdate><enddate>20240112</enddate><creator>Urazmatov, Tokhir</creator><creator>Kuzibaev, Khudaysukur</creator><creator>Otamuratov, Khurmatbek</creator><creator>Gulomov, Azizbek</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20240112</creationdate><title>Methods for determining the resources needed to create MapReduce computational models</title><author>Urazmatov, Tokhir ; Kuzibaev, Khudaysukur ; Otamuratov, Khurmatbek ; Gulomov, Azizbek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1680-884157a0120f7534972c07b30a04395c7634dd34db0a6c44b3ae54a213361873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Distributed processing</topic><topic>Flow mapping</topic><topic>Linearity</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Problem solving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urazmatov, Tokhir</creatorcontrib><creatorcontrib>Kuzibaev, Khudaysukur</creatorcontrib><creatorcontrib>Otamuratov, Khurmatbek</creatorcontrib><creatorcontrib>Gulomov, Azizbek</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urazmatov, Tokhir</au><au>Kuzibaev, Khudaysukur</au><au>Otamuratov, Khurmatbek</au><au>Gulomov, Azizbek</au><au>Kovalev, Igor</au><au>Voroshilova, Anna</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Methods for determining the resources needed to create MapReduce computational models</atitle><btitle>AIP conference proceedings</btitle><date>2024-01-12</date><risdate>2024</risdate><volume>2969</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>A description of the mathematical model of the cost of model resources when executing MapReduce jobs in distributed environments is given. It was revealed that the total worth of all model resources consists of the cost of preparing the cluster for operation and launching its tasks, as well as the worth of resources, necessary for the immediate performance of these tasks. The main parameters that affect the speed of execution and the amount of resources consumed when solving problems using the MapReduce paradigm are considered. Defined four classes of parameters involved in MapReduce optimization: data flow, cost fields, data flow statistics, and cost field statistics. A sign of linearity of the worth model was established when solving the problem of finding the frequency of words in an array of documents. It is revealed that linearity is preserved when solving problems requiring sequential application of several MapReduce-computation models.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0190710</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2024, Vol.2969 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2913522441
source AIP Journals Complete
subjects Distributed processing
Flow mapping
Linearity
Mathematical models
Parameters
Problem solving
title Methods for determining the resources needed to create MapReduce computational models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Methods%20for%20determining%20the%20resources%20needed%20to%20create%20MapReduce%20computational%20models&rft.btitle=AIP%20conference%20proceedings&rft.au=Urazmatov,%20Tokhir&rft.date=2024-01-12&rft.volume=2969&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0190710&rft_dat=%3Cproquest_scita%3E2913522441%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913522441&rft_id=info:pmid/&rfr_iscdi=true