Catalyst-free upcycling of crosslinked polyethylene foams for CO2 capture
Recycling of crosslinked plastics is an intractable challenge due to their very limited amenability to mechanical reprocessing. While a variety of chemical recycling methods have been recently reported, these systems primarily focus on deconstructing or depolymerizing plastics to monomers and liquid...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2024-01, Vol.39 (1), p.115-125 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 1 |
container_start_page | 115 |
container_title | Journal of materials research |
container_volume | 39 |
creator | Obando, Alejandro Guillen Robertson, Mark Umeojiakor, Chinwendu Smith, Paul Griffin, Anthony Xiang, Yizhi Qiang, Zhe |
description | Recycling of crosslinked plastics is an intractable challenge due to their very limited amenability to mechanical reprocessing. While a variety of chemical recycling methods have been recently reported, these systems primarily focus on deconstructing or depolymerizing plastics to monomers and liquid fuels, which their subsequent use likely involves additional energy consumption and greenhouse gas emission. In this work, we present a simple, scalable, and catalyst-free method for directly converting crosslinked polyethylene (PE) foams into porous carbon materials. This process is enabled by sulfonation-based crosslinking, allowing the conversion of PE to become efficient carbon precursors, while retaining the high porosity feature from the foam precursors. Through two steps of sulfonation and carbonization, derived carbons contain a relatively high surface area and sulfur-doped framework. As a result, these materials can exhibit high CO
2
sorption capacity and CO
2
/N
2
selectivity. This work presents a viable pathway to address two grand-scale environmental challenges of plastic wastes and greenhouse gas emissions.
Graphical abstract |
doi_str_mv | 10.1557/s43578-023-01016-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913467399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913467399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-4eed4f4c98aa485ac886fdfbb3ee00af10b204c2c5b4f94f66c5c39163fa148a3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4MU6cJYp4VKrUDawtxx2XljQJdrLI32MaJHZsZjTSvTNzDyG3nN1zpYqHCFIVmjIhKeOM57Q4IwvBAKiSIj8nC6Y1UFFyuCRXMR4Y44oVsCCryg62meJAfUDMxt5Nrtm3u6zzmQtdjGn4xG3Wd82Ew8fUYIuZ7-wxphqyaiMyZ_thDHhNLrxtIt789iV5f356q17pevOyqh7X1EkOAwXELXhwpbYWtLJO69xvfV1LRMas56xOfzvhVA2-BJ_nTjlZ8lx6y0FbuSR3894-dF8jxsEcujG06aRJ-STkhSzLpBKz6hQioDd92B9tmAxn5geZmZGZhMyckJkimeRsiknc7jD8rf7H9Q1sO2-J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913467399</pqid></control><display><type>article</type><title>Catalyst-free upcycling of crosslinked polyethylene foams for CO2 capture</title><source>SpringerLink Journals</source><creator>Obando, Alejandro Guillen ; Robertson, Mark ; Umeojiakor, Chinwendu ; Smith, Paul ; Griffin, Anthony ; Xiang, Yizhi ; Qiang, Zhe</creator><creatorcontrib>Obando, Alejandro Guillen ; Robertson, Mark ; Umeojiakor, Chinwendu ; Smith, Paul ; Griffin, Anthony ; Xiang, Yizhi ; Qiang, Zhe</creatorcontrib><description>Recycling of crosslinked plastics is an intractable challenge due to their very limited amenability to mechanical reprocessing. While a variety of chemical recycling methods have been recently reported, these systems primarily focus on deconstructing or depolymerizing plastics to monomers and liquid fuels, which their subsequent use likely involves additional energy consumption and greenhouse gas emission. In this work, we present a simple, scalable, and catalyst-free method for directly converting crosslinked polyethylene (PE) foams into porous carbon materials. This process is enabled by sulfonation-based crosslinking, allowing the conversion of PE to become efficient carbon precursors, while retaining the high porosity feature from the foam precursors. Through two steps of sulfonation and carbonization, derived carbons contain a relatively high surface area and sulfur-doped framework. As a result, these materials can exhibit high CO
2
sorption capacity and CO
2
/N
2
selectivity. This work presents a viable pathway to address two grand-scale environmental challenges of plastic wastes and greenhouse gas emissions.
Graphical abstract</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/s43578-023-01016-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applied and Technical Physics ; Biomaterials ; Carbon dioxide ; Carbon sequestration ; Catalysts ; Chemistry and Materials Science ; Cross-linked polyethylene ; Crosslinking ; Depolymerization ; Emissions ; Energy consumption ; Greenhouse gases ; Inorganic Chemistry ; Liquid fuels ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Plastic foam ; Polyethylene ; Porous materials ; Precursors ; Recycling ; Reprocessing</subject><ispartof>Journal of materials research, 2024-01, Vol.39 (1), p.115-125</ispartof><rights>The Author(s) 2023. corrected publication 2023</rights><rights>The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-4eed4f4c98aa485ac886fdfbb3ee00af10b204c2c5b4f94f66c5c39163fa148a3</cites><orcidid>0000-0003-4429-1754 ; 0000-0002-3539-9053</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/s43578-023-01016-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1557/s43578-023-01016-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Obando, Alejandro Guillen</creatorcontrib><creatorcontrib>Robertson, Mark</creatorcontrib><creatorcontrib>Umeojiakor, Chinwendu</creatorcontrib><creatorcontrib>Smith, Paul</creatorcontrib><creatorcontrib>Griffin, Anthony</creatorcontrib><creatorcontrib>Xiang, Yizhi</creatorcontrib><creatorcontrib>Qiang, Zhe</creatorcontrib><title>Catalyst-free upcycling of crosslinked polyethylene foams for CO2 capture</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><description>Recycling of crosslinked plastics is an intractable challenge due to their very limited amenability to mechanical reprocessing. While a variety of chemical recycling methods have been recently reported, these systems primarily focus on deconstructing or depolymerizing plastics to monomers and liquid fuels, which their subsequent use likely involves additional energy consumption and greenhouse gas emission. In this work, we present a simple, scalable, and catalyst-free method for directly converting crosslinked polyethylene (PE) foams into porous carbon materials. This process is enabled by sulfonation-based crosslinking, allowing the conversion of PE to become efficient carbon precursors, while retaining the high porosity feature from the foam precursors. Through two steps of sulfonation and carbonization, derived carbons contain a relatively high surface area and sulfur-doped framework. As a result, these materials can exhibit high CO
2
sorption capacity and CO
2
/N
2
selectivity. This work presents a viable pathway to address two grand-scale environmental challenges of plastic wastes and greenhouse gas emissions.
Graphical abstract</description><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Cross-linked polyethylene</subject><subject>Crosslinking</subject><subject>Depolymerization</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Greenhouse gases</subject><subject>Inorganic Chemistry</subject><subject>Liquid fuels</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Plastic foam</subject><subject>Polyethylene</subject><subject>Porous materials</subject><subject>Precursors</subject><subject>Recycling</subject><subject>Reprocessing</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wisTb4MU6cJYp4VKrUDawtxx2XljQJdrLI32MaJHZsZjTSvTNzDyG3nN1zpYqHCFIVmjIhKeOM57Q4IwvBAKiSIj8nC6Y1UFFyuCRXMR4Y44oVsCCryg62meJAfUDMxt5Nrtm3u6zzmQtdjGn4xG3Wd82Ew8fUYIuZ7-wxphqyaiMyZ_thDHhNLrxtIt789iV5f356q17pevOyqh7X1EkOAwXELXhwpbYWtLJO69xvfV1LRMas56xOfzvhVA2-BJ_nTjlZ8lx6y0FbuSR3894-dF8jxsEcujG06aRJ-STkhSzLpBKz6hQioDd92B9tmAxn5geZmZGZhMyckJkimeRsiknc7jD8rf7H9Q1sO2-J</recordid><startdate>20240114</startdate><enddate>20240114</enddate><creator>Obando, Alejandro Guillen</creator><creator>Robertson, Mark</creator><creator>Umeojiakor, Chinwendu</creator><creator>Smith, Paul</creator><creator>Griffin, Anthony</creator><creator>Xiang, Yizhi</creator><creator>Qiang, Zhe</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4429-1754</orcidid><orcidid>https://orcid.org/0000-0002-3539-9053</orcidid></search><sort><creationdate>20240114</creationdate><title>Catalyst-free upcycling of crosslinked polyethylene foams for CO2 capture</title><author>Obando, Alejandro Guillen ; Robertson, Mark ; Umeojiakor, Chinwendu ; Smith, Paul ; Griffin, Anthony ; Xiang, Yizhi ; Qiang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-4eed4f4c98aa485ac886fdfbb3ee00af10b204c2c5b4f94f66c5c39163fa148a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Cross-linked polyethylene</topic><topic>Crosslinking</topic><topic>Depolymerization</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Greenhouse gases</topic><topic>Inorganic Chemistry</topic><topic>Liquid fuels</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Plastic foam</topic><topic>Polyethylene</topic><topic>Porous materials</topic><topic>Precursors</topic><topic>Recycling</topic><topic>Reprocessing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obando, Alejandro Guillen</creatorcontrib><creatorcontrib>Robertson, Mark</creatorcontrib><creatorcontrib>Umeojiakor, Chinwendu</creatorcontrib><creatorcontrib>Smith, Paul</creatorcontrib><creatorcontrib>Griffin, Anthony</creatorcontrib><creatorcontrib>Xiang, Yizhi</creatorcontrib><creatorcontrib>Qiang, Zhe</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obando, Alejandro Guillen</au><au>Robertson, Mark</au><au>Umeojiakor, Chinwendu</au><au>Smith, Paul</au><au>Griffin, Anthony</au><au>Xiang, Yizhi</au><au>Qiang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalyst-free upcycling of crosslinked polyethylene foams for CO2 capture</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><date>2024-01-14</date><risdate>2024</risdate><volume>39</volume><issue>1</issue><spage>115</spage><epage>125</epage><pages>115-125</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Recycling of crosslinked plastics is an intractable challenge due to their very limited amenability to mechanical reprocessing. While a variety of chemical recycling methods have been recently reported, these systems primarily focus on deconstructing or depolymerizing plastics to monomers and liquid fuels, which their subsequent use likely involves additional energy consumption and greenhouse gas emission. In this work, we present a simple, scalable, and catalyst-free method for directly converting crosslinked polyethylene (PE) foams into porous carbon materials. This process is enabled by sulfonation-based crosslinking, allowing the conversion of PE to become efficient carbon precursors, while retaining the high porosity feature from the foam precursors. Through two steps of sulfonation and carbonization, derived carbons contain a relatively high surface area and sulfur-doped framework. As a result, these materials can exhibit high CO
2
sorption capacity and CO
2
/N
2
selectivity. This work presents a viable pathway to address two grand-scale environmental challenges of plastic wastes and greenhouse gas emissions.
Graphical abstract</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1557/s43578-023-01016-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4429-1754</orcidid><orcidid>https://orcid.org/0000-0002-3539-9053</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2024-01, Vol.39 (1), p.115-125 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_2913467399 |
source | SpringerLink Journals |
subjects | Applied and Technical Physics Biomaterials Carbon dioxide Carbon sequestration Catalysts Chemistry and Materials Science Cross-linked polyethylene Crosslinking Depolymerization Emissions Energy consumption Greenhouse gases Inorganic Chemistry Liquid fuels Materials Engineering Materials research Materials Science Nanotechnology Plastic foam Polyethylene Porous materials Precursors Recycling Reprocessing |
title | Catalyst-free upcycling of crosslinked polyethylene foams for CO2 capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T12%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalyst-free%20upcycling%20of%20crosslinked%20polyethylene%20foams%20for%20CO2%20capture&rft.jtitle=Journal%20of%20materials%20research&rft.au=Obando,%20Alejandro%20Guillen&rft.date=2024-01-14&rft.volume=39&rft.issue=1&rft.spage=115&rft.epage=125&rft.pages=115-125&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/s43578-023-01016-7&rft_dat=%3Cproquest_cross%3E2913467399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913467399&rft_id=info:pmid/&rfr_iscdi=true |