(R_{\infty}\)-property for finitely generated torsion-free 2-step nilpotent groups of small Hirsch length
In this paper we will show that finitely generated torsion-free 2-step nilpotent groups of Hirsch length at most 6 do not have the \(R_{\infty}\)-property, while there are examples of such groups of Hirsch length 7 that do have the \(R_{\infty}\)-property.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dekimpe, Karel Lathouwers, Maarten |
description | In this paper we will show that finitely generated torsion-free 2-step nilpotent groups of Hirsch length at most 6 do not have the \(R_{\infty}\)-property, while there are examples of such groups of Hirsch length 7 that do have the \(R_{\infty}\)-property. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2913255443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2913255443</sourcerecordid><originalsourceid>FETCH-proquest_journals_29132554433</originalsourceid><addsrcrecordid>eNqNjrsKAjEQRYMgKOo_DNhosbAm66sWxVoshWXRyRqJSZyZLRbx31XwA6xucQ6c21F9bcwsWxVa99SI-ZbnuV4s9Xxu-spNDuXz5IKV9nWaZoliQpIWbCSwLjhB30KNAakSvIBEYhdDZgkRdMaCCYLzKQoGgZpikxiiBb5X3sPeEZ-v4DHUch2qrq084-i3AzXebY-b_bf5aJClvMWGwgeVej0zn3tFYcx_1hsB50jI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913255443</pqid></control><display><type>article</type><title>(R_{\infty}\)-property for finitely generated torsion-free 2-step nilpotent groups of small Hirsch length</title><source>Freely Accessible Journals</source><creator>Dekimpe, Karel ; Lathouwers, Maarten</creator><creatorcontrib>Dekimpe, Karel ; Lathouwers, Maarten</creatorcontrib><description>In this paper we will show that finitely generated torsion-free 2-step nilpotent groups of Hirsch length at most 6 do not have the \(R_{\infty}\)-property, while there are examples of such groups of Hirsch length 7 that do have the \(R_{\infty}\)-property.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dekimpe, Karel</creatorcontrib><creatorcontrib>Lathouwers, Maarten</creatorcontrib><title>(R_{\infty}\)-property for finitely generated torsion-free 2-step nilpotent groups of small Hirsch length</title><title>arXiv.org</title><description>In this paper we will show that finitely generated torsion-free 2-step nilpotent groups of Hirsch length at most 6 do not have the \(R_{\infty}\)-property, while there are examples of such groups of Hirsch length 7 that do have the \(R_{\infty}\)-property.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjrsKAjEQRYMgKOo_DNhosbAm66sWxVoshWXRyRqJSZyZLRbx31XwA6xucQ6c21F9bcwsWxVa99SI-ZbnuV4s9Xxu-spNDuXz5IKV9nWaZoliQpIWbCSwLjhB30KNAakSvIBEYhdDZgkRdMaCCYLzKQoGgZpikxiiBb5X3sPeEZ-v4DHUch2qrq084-i3AzXebY-b_bf5aJClvMWGwgeVej0zn3tFYcx_1hsB50jI</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Dekimpe, Karel</creator><creator>Lathouwers, Maarten</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240110</creationdate><title>(R_{\infty}\)-property for finitely generated torsion-free 2-step nilpotent groups of small Hirsch length</title><author>Dekimpe, Karel ; Lathouwers, Maarten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29132554433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Dekimpe, Karel</creatorcontrib><creatorcontrib>Lathouwers, Maarten</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dekimpe, Karel</au><au>Lathouwers, Maarten</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>(R_{\infty}\)-property for finitely generated torsion-free 2-step nilpotent groups of small Hirsch length</atitle><jtitle>arXiv.org</jtitle><date>2024-01-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this paper we will show that finitely generated torsion-free 2-step nilpotent groups of Hirsch length at most 6 do not have the \(R_{\infty}\)-property, while there are examples of such groups of Hirsch length 7 that do have the \(R_{\infty}\)-property.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2913255443 |
source | Freely Accessible Journals |
title | (R_{\infty}\)-property for finitely generated torsion-free 2-step nilpotent groups of small Hirsch length |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=(R_%7B%5Cinfty%7D%5C)-property%20for%20finitely%20generated%20torsion-free%202-step%20nilpotent%20groups%20of%20small%20Hirsch%20length&rft.jtitle=arXiv.org&rft.au=Dekimpe,%20Karel&rft.date=2024-01-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2913255443%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913255443&rft_id=info:pmid/&rfr_iscdi=true |