Transition from Small-scale to Large-scale Dynamo in a Supernova-driven, Multiphase Medium

Magnetic fields are now widely recognized as critical at many scales to galactic dynamics and structure, including multiphase pressure balance, dust processing, and star formation. Using imposed magnetic fields cannot reliably model the interstellar medium's (ISM) dynamical structure nor phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-01, Vol.961 (1), p.7
Hauptverfasser: Gent, Frederick A., Mac Low, Mordecai-Mark, Korpi-Lagg, Maarit J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 7
container_title The Astrophysical journal
container_volume 961
creator Gent, Frederick A.
Mac Low, Mordecai-Mark
Korpi-Lagg, Maarit J.
description Magnetic fields are now widely recognized as critical at many scales to galactic dynamics and structure, including multiphase pressure balance, dust processing, and star formation. Using imposed magnetic fields cannot reliably model the interstellar medium's (ISM) dynamical structure nor phase interactions. Dynamos must be modeled. ISM models exist of turbulent magnetic fields using small-scale dynamo (SSD). Others model the large-scale dynamo (LSD) organizing magnetic fields at the scale of the disk or spiral arms. Separately, neither can fully describe the galactic magnetic field dynamics nor topology. We model the LSD and SSD together at a sufficient resolution to use the low explicit Lagrangian resistivity required. The galactic SSD saturates within 20 Myr. We show that the SSD is quite insensitive to the presence of an LSD and is even stronger in the presence of a large-scale shear flow. The LSD grows more slowly in the presence of SSD, saturating after 5 Gyr versus 1–2 Gyr in studies where the SSD is weak or absent. The LSD primarily grows in warm gas in the galactic midplane. Saturation of the LSD occurs due to α -quenching near the midplane as the growing mean-field produces a magnetic α that opposes the kinetic α . The magnetic energy in our models of the LSD shows a slightly sublinear response to increasing resolution, indicating that we are converging toward the physical solution at 1 pc resolution. Clustering supernovae in OB associations increases the growth rates for both the SSD and the LSD, compared to a horizontally uniform supernova distribution.
doi_str_mv 10.3847/1538-4357/ad0da0
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2913137373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b38db1d9d2154f6086b1f812dbaff8fc</doaj_id><sourcerecordid>2913137373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-a77dd70ac3dd1ef76004c374e3e15b4c9143f6e974b9712d3709cd723bb79c3f3</originalsourceid><addsrcrecordid>eNp1kctLxDAQxoMouD7uHgNerSZNtmmO4htWPKggXsI0D83SNjVpF_a_t2tlPckchvn45jfDDEInlJyzkosLOmdlxtlcXIAhBsgOmm2lXTQjhPCsYOJtHx2ktNyUuZQz9P4SoU2-96HFLoYGPzdQ11nSUFvcB7yA-GF_y-t1C03AvsWAn4fOxjasIDPRr2x7hh-HuvfdJySLH63xQ3OE9hzUyR7_5kP0envzcnWfLZ7uHq4uF5nmtOgzEMIYQUAzY6h1ohhX00xwyyydV1xLypkrrBS8koLmhgkitRE5qyohNXPsED1MXBNgqbroG4hrFcCrHyHEDwWx97q2qmKlqaiRJqdz7gpSFhV15QitwLnS6ZF1OrG6GL4Gm3q1DENsx_VVLimjTIwxusjk0jGkFK3bTqVEbb6hNqdXm9Or6Rtjy9nU4kP3x_zX_g1LfYuA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913137373</pqid></control><display><type>article</type><title>Transition from Small-scale to Large-scale Dynamo in a Supernova-driven, Multiphase Medium</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Gent, Frederick A. ; Mac Low, Mordecai-Mark ; Korpi-Lagg, Maarit J.</creator><creatorcontrib>Gent, Frederick A. ; Mac Low, Mordecai-Mark ; Korpi-Lagg, Maarit J.</creatorcontrib><description>Magnetic fields are now widely recognized as critical at many scales to galactic dynamics and structure, including multiphase pressure balance, dust processing, and star formation. Using imposed magnetic fields cannot reliably model the interstellar medium's (ISM) dynamical structure nor phase interactions. Dynamos must be modeled. ISM models exist of turbulent magnetic fields using small-scale dynamo (SSD). Others model the large-scale dynamo (LSD) organizing magnetic fields at the scale of the disk or spiral arms. Separately, neither can fully describe the galactic magnetic field dynamics nor topology. We model the LSD and SSD together at a sufficient resolution to use the low explicit Lagrangian resistivity required. The galactic SSD saturates within 20 Myr. We show that the SSD is quite insensitive to the presence of an LSD and is even stronger in the presence of a large-scale shear flow. The LSD grows more slowly in the presence of SSD, saturating after 5 Gyr versus 1–2 Gyr in studies where the SSD is weak or absent. The LSD primarily grows in warm gas in the galactic midplane. Saturation of the LSD occurs due to α -quenching near the midplane as the growing mean-field produces a magnetic α that opposes the kinetic α . The magnetic energy in our models of the LSD shows a slightly sublinear response to increasing resolution, indicating that we are converging toward the physical solution at 1 pc resolution. Clustering supernovae in OB associations increases the growth rates for both the SSD and the LSD, compared to a horizontally uniform supernova distribution.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad0da0</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astroinformatics ; Astrophysical fluid dynamics ; Astrophysics ; Clustering ; Cosmic dust ; Disk galaxies ; Galactic structure ; Galaxy magnetic fields ; Interstellar magnetic fields ; Interstellar matter ; Interstellar medium ; Magnetic fields ; Magnetohydrodynamical simulations ; Modelling ; Multiphase ; Rotating generators ; Shear flow ; Star &amp; galaxy formation ; Star formation ; Supernova ; Supernova dynamics ; Supernovae ; Topology</subject><ispartof>The Astrophysical journal, 2024-01, Vol.961 (1), p.7</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-a77dd70ac3dd1ef76004c374e3e15b4c9143f6e974b9712d3709cd723bb79c3f3</citedby><cites>FETCH-LOGICAL-c416t-a77dd70ac3dd1ef76004c374e3e15b4c9143f6e974b9712d3709cd723bb79c3f3</cites><orcidid>0000-0002-1331-2260 ; 0000-0003-0064-4060 ; 0000-0002-9614-2200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad0da0/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38869,53846</link.rule.ids></links><search><creatorcontrib>Gent, Frederick A.</creatorcontrib><creatorcontrib>Mac Low, Mordecai-Mark</creatorcontrib><creatorcontrib>Korpi-Lagg, Maarit J.</creatorcontrib><title>Transition from Small-scale to Large-scale Dynamo in a Supernova-driven, Multiphase Medium</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Magnetic fields are now widely recognized as critical at many scales to galactic dynamics and structure, including multiphase pressure balance, dust processing, and star formation. Using imposed magnetic fields cannot reliably model the interstellar medium's (ISM) dynamical structure nor phase interactions. Dynamos must be modeled. ISM models exist of turbulent magnetic fields using small-scale dynamo (SSD). Others model the large-scale dynamo (LSD) organizing magnetic fields at the scale of the disk or spiral arms. Separately, neither can fully describe the galactic magnetic field dynamics nor topology. We model the LSD and SSD together at a sufficient resolution to use the low explicit Lagrangian resistivity required. The galactic SSD saturates within 20 Myr. We show that the SSD is quite insensitive to the presence of an LSD and is even stronger in the presence of a large-scale shear flow. The LSD grows more slowly in the presence of SSD, saturating after 5 Gyr versus 1–2 Gyr in studies where the SSD is weak or absent. The LSD primarily grows in warm gas in the galactic midplane. Saturation of the LSD occurs due to α -quenching near the midplane as the growing mean-field produces a magnetic α that opposes the kinetic α . The magnetic energy in our models of the LSD shows a slightly sublinear response to increasing resolution, indicating that we are converging toward the physical solution at 1 pc resolution. Clustering supernovae in OB associations increases the growth rates for both the SSD and the LSD, compared to a horizontally uniform supernova distribution.</description><subject>Astroinformatics</subject><subject>Astrophysical fluid dynamics</subject><subject>Astrophysics</subject><subject>Clustering</subject><subject>Cosmic dust</subject><subject>Disk galaxies</subject><subject>Galactic structure</subject><subject>Galaxy magnetic fields</subject><subject>Interstellar magnetic fields</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamical simulations</subject><subject>Modelling</subject><subject>Multiphase</subject><subject>Rotating generators</subject><subject>Shear flow</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Supernova</subject><subject>Supernova dynamics</subject><subject>Supernovae</subject><subject>Topology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kctLxDAQxoMouD7uHgNerSZNtmmO4htWPKggXsI0D83SNjVpF_a_t2tlPckchvn45jfDDEInlJyzkosLOmdlxtlcXIAhBsgOmm2lXTQjhPCsYOJtHx2ktNyUuZQz9P4SoU2-96HFLoYGPzdQ11nSUFvcB7yA-GF_y-t1C03AvsWAn4fOxjasIDPRr2x7hh-HuvfdJySLH63xQ3OE9hzUyR7_5kP0envzcnWfLZ7uHq4uF5nmtOgzEMIYQUAzY6h1ohhX00xwyyydV1xLypkrrBS8koLmhgkitRE5qyohNXPsED1MXBNgqbroG4hrFcCrHyHEDwWx97q2qmKlqaiRJqdz7gpSFhV15QitwLnS6ZF1OrG6GL4Gm3q1DENsx_VVLimjTIwxusjk0jGkFK3bTqVEbb6hNqdXm9Or6Rtjy9nU4kP3x_zX_g1LfYuA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Gent, Frederick A.</creator><creator>Mac Low, Mordecai-Mark</creator><creator>Korpi-Lagg, Maarit J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1331-2260</orcidid><orcidid>https://orcid.org/0000-0003-0064-4060</orcidid><orcidid>https://orcid.org/0000-0002-9614-2200</orcidid></search><sort><creationdate>20240101</creationdate><title>Transition from Small-scale to Large-scale Dynamo in a Supernova-driven, Multiphase Medium</title><author>Gent, Frederick A. ; Mac Low, Mordecai-Mark ; Korpi-Lagg, Maarit J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-a77dd70ac3dd1ef76004c374e3e15b4c9143f6e974b9712d3709cd723bb79c3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astroinformatics</topic><topic>Astrophysical fluid dynamics</topic><topic>Astrophysics</topic><topic>Clustering</topic><topic>Cosmic dust</topic><topic>Disk galaxies</topic><topic>Galactic structure</topic><topic>Galaxy magnetic fields</topic><topic>Interstellar magnetic fields</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamical simulations</topic><topic>Modelling</topic><topic>Multiphase</topic><topic>Rotating generators</topic><topic>Shear flow</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Supernova</topic><topic>Supernova dynamics</topic><topic>Supernovae</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gent, Frederick A.</creatorcontrib><creatorcontrib>Mac Low, Mordecai-Mark</creatorcontrib><creatorcontrib>Korpi-Lagg, Maarit J.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gent, Frederick A.</au><au>Mac Low, Mordecai-Mark</au><au>Korpi-Lagg, Maarit J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition from Small-scale to Large-scale Dynamo in a Supernova-driven, Multiphase Medium</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>961</volume><issue>1</issue><spage>7</spage><pages>7-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Magnetic fields are now widely recognized as critical at many scales to galactic dynamics and structure, including multiphase pressure balance, dust processing, and star formation. Using imposed magnetic fields cannot reliably model the interstellar medium's (ISM) dynamical structure nor phase interactions. Dynamos must be modeled. ISM models exist of turbulent magnetic fields using small-scale dynamo (SSD). Others model the large-scale dynamo (LSD) organizing magnetic fields at the scale of the disk or spiral arms. Separately, neither can fully describe the galactic magnetic field dynamics nor topology. We model the LSD and SSD together at a sufficient resolution to use the low explicit Lagrangian resistivity required. The galactic SSD saturates within 20 Myr. We show that the SSD is quite insensitive to the presence of an LSD and is even stronger in the presence of a large-scale shear flow. The LSD grows more slowly in the presence of SSD, saturating after 5 Gyr versus 1–2 Gyr in studies where the SSD is weak or absent. The LSD primarily grows in warm gas in the galactic midplane. Saturation of the LSD occurs due to α -quenching near the midplane as the growing mean-field produces a magnetic α that opposes the kinetic α . The magnetic energy in our models of the LSD shows a slightly sublinear response to increasing resolution, indicating that we are converging toward the physical solution at 1 pc resolution. Clustering supernovae in OB associations increases the growth rates for both the SSD and the LSD, compared to a horizontally uniform supernova distribution.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad0da0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1331-2260</orcidid><orcidid>https://orcid.org/0000-0003-0064-4060</orcidid><orcidid>https://orcid.org/0000-0002-9614-2200</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-01, Vol.961 (1), p.7
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2913137373
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Astroinformatics
Astrophysical fluid dynamics
Astrophysics
Clustering
Cosmic dust
Disk galaxies
Galactic structure
Galaxy magnetic fields
Interstellar magnetic fields
Interstellar matter
Interstellar medium
Magnetic fields
Magnetohydrodynamical simulations
Modelling
Multiphase
Rotating generators
Shear flow
Star & galaxy formation
Star formation
Supernova
Supernova dynamics
Supernovae
Topology
title Transition from Small-scale to Large-scale Dynamo in a Supernova-driven, Multiphase Medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A59%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20from%20Small-scale%20to%20Large-scale%20Dynamo%20in%20a%20Supernova-driven,%20Multiphase%20Medium&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gent,%20Frederick%20A.&rft.date=2024-01-01&rft.volume=961&rft.issue=1&rft.spage=7&rft.pages=7-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad0da0&rft_dat=%3Cproquest_doaj_%3E2913137373%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913137373&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_b38db1d9d2154f6086b1f812dbaff8fc&rfr_iscdi=true