Organic solvent-free synthesis of calcium sulfate hemihydrate at room temperature

Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical communications (Cambridge, England) England), 2024-01, Vol.6 (5), p.61-613
Hauptverfasser: Reigl, Selina, Van Driessche, Alexander E. S, Ullrich, Timo, Koltzenburg, Sebastian, Kunz, Werner, Kellermeier, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 5
container_start_page 61
container_title Chemical communications (Cambridge, England)
container_volume 6
creator Reigl, Selina
Van Driessche, Alexander E. S
Ullrich, Timo
Koltzenburg, Sebastian
Kunz, Werner
Kellermeier, Matthias
description Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energy and thus leaves a significant carbon footprint. Towards a more sustainable future, alternative technologies for bassanite production at low temperatures are therefore urgently required. While successful approaches involving organic solvents have been reported, we chose precipitation from aqueous solutions as a potentially even "greener" way of synthesis. In a previous work, we have shown that spontaneous formation of bassanite in water (in competition with thermodynamically favoured gypsum) can be achieved at 40 °C by the use of additives that maintain specific interactions with calcium sulfate precursors and modulate the local hydration household during crystallisation. The results of the present study demonstrate that bassanite can be obtained via simple precipitation from aqueous solutions at room temperature by the combination of additives acting through orthogonal mechanisms. The rational choice of orthogonally operating crystallisation additives allows the important hydraulic binder bassanite to be synthesised from purely aqueous media at ambient conditions.
doi_str_mv 10.1039/d3cc02552g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2913111150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2902971860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-abe645020021b9447cdae0e5a3620e866d77be1743be02d32d24bb048b9402373</originalsourceid><addsrcrecordid>eNpd0c9LwzAUB_AgipvTi3el4EWEan62zVGqTmEwBAVvJU1ft462mUkr7L83dXOC75JH8uHx-Aahc4JvCWbyrmBaYyoEXRygMWERDwVPPg6HXsgwZlyM0IlzK-yLiOQYjViCpZQRG6PXuV2ottKBM_UXtF1YWoDAbdpuCa5ygSkDrWpd9U3g-rpUHQRLaKrlprBDr7rAGtMEHTRr8De9hVN0VKrawdnunKD3p8e39Dmczacv6f0s1FRGXahyiLjAFGNKcsl5rAsFGIRiEcWQRFERxzmQmLMcMC0YLSjPc8wTjzFlMZug6-3ctTWfPbguayqnoa5VC6Z3GZWYypgkEfb06h9dmd62fjuvCCO-xKButkpb45yFMlvbqlF2kxGcDUFnDyxNf4Keeny5G9nnDRR7-pusBxdbYJ3ev_79FPsGwnOBiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2913111150</pqid></control><display><type>article</type><title>Organic solvent-free synthesis of calcium sulfate hemihydrate at room temperature</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Reigl, Selina ; Van Driessche, Alexander E. S ; Ullrich, Timo ; Koltzenburg, Sebastian ; Kunz, Werner ; Kellermeier, Matthias</creator><creatorcontrib>Reigl, Selina ; Van Driessche, Alexander E. S ; Ullrich, Timo ; Koltzenburg, Sebastian ; Kunz, Werner ; Kellermeier, Matthias</creatorcontrib><description>Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energy and thus leaves a significant carbon footprint. Towards a more sustainable future, alternative technologies for bassanite production at low temperatures are therefore urgently required. While successful approaches involving organic solvents have been reported, we chose precipitation from aqueous solutions as a potentially even "greener" way of synthesis. In a previous work, we have shown that spontaneous formation of bassanite in water (in competition with thermodynamically favoured gypsum) can be achieved at 40 °C by the use of additives that maintain specific interactions with calcium sulfate precursors and modulate the local hydration household during crystallisation. The results of the present study demonstrate that bassanite can be obtained via simple precipitation from aqueous solutions at room temperature by the combination of additives acting through orthogonal mechanisms. The rational choice of orthogonally operating crystallisation additives allows the important hydraulic binder bassanite to be synthesised from purely aqueous media at ambient conditions.</description><identifier>ISSN: 1359-7345</identifier><identifier>EISSN: 1364-548X</identifier><identifier>DOI: 10.1039/d3cc02552g</identifier><identifier>PMID: 38099963</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Additives ; Alternative technology ; Aqueous solutions ; Calcium compounds ; Calcium sulfate dihydrate ; Calcium sulfate hemihydrate ; Crystallization ; Dehydration ; Gypsum ; Inorganic materials ; Low temperature ; Room temperature ; Solvents ; Synthesis</subject><ispartof>Chemical communications (Cambridge, England), 2024-01, Vol.6 (5), p.61-613</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-abe645020021b9447cdae0e5a3620e866d77be1743be02d32d24bb048b9402373</cites><orcidid>0000-0002-0473-3880 ; 0000-0002-9463-632X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38099963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reigl, Selina</creatorcontrib><creatorcontrib>Van Driessche, Alexander E. S</creatorcontrib><creatorcontrib>Ullrich, Timo</creatorcontrib><creatorcontrib>Koltzenburg, Sebastian</creatorcontrib><creatorcontrib>Kunz, Werner</creatorcontrib><creatorcontrib>Kellermeier, Matthias</creatorcontrib><title>Organic solvent-free synthesis of calcium sulfate hemihydrate at room temperature</title><title>Chemical communications (Cambridge, England)</title><addtitle>Chem Commun (Camb)</addtitle><description>Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energy and thus leaves a significant carbon footprint. Towards a more sustainable future, alternative technologies for bassanite production at low temperatures are therefore urgently required. While successful approaches involving organic solvents have been reported, we chose precipitation from aqueous solutions as a potentially even "greener" way of synthesis. In a previous work, we have shown that spontaneous formation of bassanite in water (in competition with thermodynamically favoured gypsum) can be achieved at 40 °C by the use of additives that maintain specific interactions with calcium sulfate precursors and modulate the local hydration household during crystallisation. The results of the present study demonstrate that bassanite can be obtained via simple precipitation from aqueous solutions at room temperature by the combination of additives acting through orthogonal mechanisms. The rational choice of orthogonally operating crystallisation additives allows the important hydraulic binder bassanite to be synthesised from purely aqueous media at ambient conditions.</description><subject>Additives</subject><subject>Alternative technology</subject><subject>Aqueous solutions</subject><subject>Calcium compounds</subject><subject>Calcium sulfate dihydrate</subject><subject>Calcium sulfate hemihydrate</subject><subject>Crystallization</subject><subject>Dehydration</subject><subject>Gypsum</subject><subject>Inorganic materials</subject><subject>Low temperature</subject><subject>Room temperature</subject><subject>Solvents</subject><subject>Synthesis</subject><issn>1359-7345</issn><issn>1364-548X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpd0c9LwzAUB_AgipvTi3el4EWEan62zVGqTmEwBAVvJU1ft462mUkr7L83dXOC75JH8uHx-Aahc4JvCWbyrmBaYyoEXRygMWERDwVPPg6HXsgwZlyM0IlzK-yLiOQYjViCpZQRG6PXuV2ottKBM_UXtF1YWoDAbdpuCa5ygSkDrWpd9U3g-rpUHQRLaKrlprBDr7rAGtMEHTRr8De9hVN0VKrawdnunKD3p8e39Dmczacv6f0s1FRGXahyiLjAFGNKcsl5rAsFGIRiEcWQRFERxzmQmLMcMC0YLSjPc8wTjzFlMZug6-3ctTWfPbguayqnoa5VC6Z3GZWYypgkEfb06h9dmd62fjuvCCO-xKButkpb45yFMlvbqlF2kxGcDUFnDyxNf4Keeny5G9nnDRR7-pusBxdbYJ3ev_79FPsGwnOBiw</recordid><startdate>20240111</startdate><enddate>20240111</enddate><creator>Reigl, Selina</creator><creator>Van Driessche, Alexander E. S</creator><creator>Ullrich, Timo</creator><creator>Koltzenburg, Sebastian</creator><creator>Kunz, Werner</creator><creator>Kellermeier, Matthias</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0473-3880</orcidid><orcidid>https://orcid.org/0000-0002-9463-632X</orcidid></search><sort><creationdate>20240111</creationdate><title>Organic solvent-free synthesis of calcium sulfate hemihydrate at room temperature</title><author>Reigl, Selina ; Van Driessche, Alexander E. S ; Ullrich, Timo ; Koltzenburg, Sebastian ; Kunz, Werner ; Kellermeier, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-abe645020021b9447cdae0e5a3620e866d77be1743be02d32d24bb048b9402373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>Alternative technology</topic><topic>Aqueous solutions</topic><topic>Calcium compounds</topic><topic>Calcium sulfate dihydrate</topic><topic>Calcium sulfate hemihydrate</topic><topic>Crystallization</topic><topic>Dehydration</topic><topic>Gypsum</topic><topic>Inorganic materials</topic><topic>Low temperature</topic><topic>Room temperature</topic><topic>Solvents</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reigl, Selina</creatorcontrib><creatorcontrib>Van Driessche, Alexander E. S</creatorcontrib><creatorcontrib>Ullrich, Timo</creatorcontrib><creatorcontrib>Koltzenburg, Sebastian</creatorcontrib><creatorcontrib>Kunz, Werner</creatorcontrib><creatorcontrib>Kellermeier, Matthias</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical communications (Cambridge, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reigl, Selina</au><au>Van Driessche, Alexander E. S</au><au>Ullrich, Timo</au><au>Koltzenburg, Sebastian</au><au>Kunz, Werner</au><au>Kellermeier, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic solvent-free synthesis of calcium sulfate hemihydrate at room temperature</atitle><jtitle>Chemical communications (Cambridge, England)</jtitle><addtitle>Chem Commun (Camb)</addtitle><date>2024-01-11</date><risdate>2024</risdate><volume>6</volume><issue>5</issue><spage>61</spage><epage>613</epage><pages>61-613</pages><issn>1359-7345</issn><eissn>1364-548X</eissn><abstract>Calcium sulfate hemihydrate, also known as bassanite or Plaster of Paris, is one of the most extensively produced inorganic materials worldwide. Nowadays, bassanite is mainly obtained by thermal dehydration of calcium sulfate dihydrate (gypsum) - a process that consumes considerable amounts of energy and thus leaves a significant carbon footprint. Towards a more sustainable future, alternative technologies for bassanite production at low temperatures are therefore urgently required. While successful approaches involving organic solvents have been reported, we chose precipitation from aqueous solutions as a potentially even "greener" way of synthesis. In a previous work, we have shown that spontaneous formation of bassanite in water (in competition with thermodynamically favoured gypsum) can be achieved at 40 °C by the use of additives that maintain specific interactions with calcium sulfate precursors and modulate the local hydration household during crystallisation. The results of the present study demonstrate that bassanite can be obtained via simple precipitation from aqueous solutions at room temperature by the combination of additives acting through orthogonal mechanisms. The rational choice of orthogonally operating crystallisation additives allows the important hydraulic binder bassanite to be synthesised from purely aqueous media at ambient conditions.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38099963</pmid><doi>10.1039/d3cc02552g</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0473-3880</orcidid><orcidid>https://orcid.org/0000-0002-9463-632X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-7345
ispartof Chemical communications (Cambridge, England), 2024-01, Vol.6 (5), p.61-613
issn 1359-7345
1364-548X
language eng
recordid cdi_proquest_journals_2913111150
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Additives
Alternative technology
Aqueous solutions
Calcium compounds
Calcium sulfate dihydrate
Calcium sulfate hemihydrate
Crystallization
Dehydration
Gypsum
Inorganic materials
Low temperature
Room temperature
Solvents
Synthesis
title Organic solvent-free synthesis of calcium sulfate hemihydrate at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A01%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20solvent-free%20synthesis%20of%20calcium%20sulfate%20hemihydrate%20at%20room%20temperature&rft.jtitle=Chemical%20communications%20(Cambridge,%20England)&rft.au=Reigl,%20Selina&rft.date=2024-01-11&rft.volume=6&rft.issue=5&rft.spage=61&rft.epage=613&rft.pages=61-613&rft.issn=1359-7345&rft.eissn=1364-548X&rft_id=info:doi/10.1039/d3cc02552g&rft_dat=%3Cproquest_cross%3E2902971860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2913111150&rft_id=info:pmid/38099963&rfr_iscdi=true