WiLDAR: WiFi Signal-Based Lightweight Deep Learning Model for Human Activity Recognition

In recent years, the WiFi channel state information (CSI) has been increasingly used for human activity recognition (HAR) during activities of daily living, because of nonintrusiveness and privacy preserving properties. However, most previous works require complex processing of CSI signals, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2024-01, Vol.11 (2), p.2899-2908
Hauptverfasser: Deng, Fuxiang, Jovanov, Emil, Song, Houbing, Shi, Weisong, Zhang, Yuan, Xu, Wenyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2908
container_issue 2
container_start_page 2899
container_title IEEE internet of things journal
container_volume 11
creator Deng, Fuxiang
Jovanov, Emil
Song, Houbing
Shi, Weisong
Zhang, Yuan
Xu, Wenyao
description In recent years, the WiFi channel state information (CSI) has been increasingly used for human activity recognition (HAR) during activities of daily living, because of nonintrusiveness and privacy preserving properties. However, most previous works require complex processing of CSI signals, and the large number of classification network parameters significantly increases the recognition time and deployment costs. Accordingly, a WiFi signal-based lightweight deep learning (WiLDAR) network is developed in this study to ensure systematic operation on edge computing devices. We combine the random convolution kernel with deep separable convolution and residual structure, so that WiLDAR can easily extract CSI signal features without filtering and denoising. The parameter number and training time of WiLDAR are, thus, much less than those of previous neural networks. In addition, a tiny HAR system using only Raspberry Pi and router is implemented. Experiments verify that WiLDAR can achieve real-time HAR on Internet of Things devices, which makes HAR deployment more convenient. We test WiLDAR on three different fine-grained action data sets to achieve 99%, 93.5%, and 97.5% recognition accuracy, respectively. The demonstrated learning capability of WiLDAR makes it an excellent option for the remote HAR.
doi_str_mv 10.1109/JIOT.2023.3294004
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2912942770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10178032</ieee_id><sourcerecordid>2912942770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-17e3d41761e504e69d6a9a16b3d1dd23694fd85cc5f8a8c74c92b1bfd284bc043</originalsourceid><addsrcrecordid>eNpNkF1PwjAUhhujiUT5ASZeNPF62K-tq3cIIpgZEsTgXdO13SyBDduh4d-7BS64Oe-5eN6TnAeAO4wGGCPx-DabLwcEETqgRDCE2AXoEUp4xJKEXJ7t16Afwhoh1NZiLJIe-Fq5bDxcPMGVmzj44cpKbaJnFayBmSu_mz_bTTi2dgczq3zlqhK-18ZuYFF7ON1vVQWHunG_rjnAhdV1WbnG1dUtuCrUJtj-KW_A5-RlOZpG2fx1NhpmkaaUNxHmlhqGeYJtjJhNhEmUUDjJqcHGEJoIVpg01jouUpVqzrQgOc4LQ1KWa8ToDXg43t35-mdvQyPX9d63XwRJBG51EM5RS-EjpX0dgreF3Hm3Vf4gMZKdQ9k5lJ1DeXLYdu6PHWetPeMxTxEl9B_EG2vn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912942770</pqid></control><display><type>article</type><title>WiLDAR: WiFi Signal-Based Lightweight Deep Learning Model for Human Activity Recognition</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Deng, Fuxiang ; Jovanov, Emil ; Song, Houbing ; Shi, Weisong ; Zhang, Yuan ; Xu, Wenyao</creator><creatorcontrib>Deng, Fuxiang ; Jovanov, Emil ; Song, Houbing ; Shi, Weisong ; Zhang, Yuan ; Xu, Wenyao</creatorcontrib><description>In recent years, the WiFi channel state information (CSI) has been increasingly used for human activity recognition (HAR) during activities of daily living, because of nonintrusiveness and privacy preserving properties. However, most previous works require complex processing of CSI signals, and the large number of classification network parameters significantly increases the recognition time and deployment costs. Accordingly, a WiFi signal-based lightweight deep learning (WiLDAR) network is developed in this study to ensure systematic operation on edge computing devices. We combine the random convolution kernel with deep separable convolution and residual structure, so that WiLDAR can easily extract CSI signal features without filtering and denoising. The parameter number and training time of WiLDAR are, thus, much less than those of previous neural networks. In addition, a tiny HAR system using only Raspberry Pi and router is implemented. Experiments verify that WiLDAR can achieve real-time HAR on Internet of Things devices, which makes HAR deployment more convenient. We test WiLDAR on three different fine-grained action data sets to achieve 99%, 93.5%, and 97.5% recognition accuracy, respectively. The demonstrated learning capability of WiLDAR makes it an excellent option for the remote HAR.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3294004</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Channel state information (CSI) ; Convolution ; Convolutional neural networks ; Deep learning ; Edge computing ; Feature extraction ; Human activity recognition ; human activity recognition (HAR) ; Internet of Things ; Internet of Things (IoT) ; Lightweight ; Machine learning ; Monitoring ; neural network ; Neural networks ; Parameters ; WiFi sensing ; Wireless fidelity</subject><ispartof>IEEE internet of things journal, 2024-01, Vol.11 (2), p.2899-2908</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-17e3d41761e504e69d6a9a16b3d1dd23694fd85cc5f8a8c74c92b1bfd284bc043</citedby><cites>FETCH-LOGICAL-c337t-17e3d41761e504e69d6a9a16b3d1dd23694fd85cc5f8a8c74c92b1bfd284bc043</cites><orcidid>0000-0001-5864-4675 ; 0000-0003-2726-2855 ; 0000-0003-2631-9223 ; 0000-0001-6444-9411 ; 0000-0001-7542-8157 ; 0000-0001-6754-3518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10178032$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10178032$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Deng, Fuxiang</creatorcontrib><creatorcontrib>Jovanov, Emil</creatorcontrib><creatorcontrib>Song, Houbing</creatorcontrib><creatorcontrib>Shi, Weisong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Xu, Wenyao</creatorcontrib><title>WiLDAR: WiFi Signal-Based Lightweight Deep Learning Model for Human Activity Recognition</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>In recent years, the WiFi channel state information (CSI) has been increasingly used for human activity recognition (HAR) during activities of daily living, because of nonintrusiveness and privacy preserving properties. However, most previous works require complex processing of CSI signals, and the large number of classification network parameters significantly increases the recognition time and deployment costs. Accordingly, a WiFi signal-based lightweight deep learning (WiLDAR) network is developed in this study to ensure systematic operation on edge computing devices. We combine the random convolution kernel with deep separable convolution and residual structure, so that WiLDAR can easily extract CSI signal features without filtering and denoising. The parameter number and training time of WiLDAR are, thus, much less than those of previous neural networks. In addition, a tiny HAR system using only Raspberry Pi and router is implemented. Experiments verify that WiLDAR can achieve real-time HAR on Internet of Things devices, which makes HAR deployment more convenient. We test WiLDAR on three different fine-grained action data sets to achieve 99%, 93.5%, and 97.5% recognition accuracy, respectively. The demonstrated learning capability of WiLDAR makes it an excellent option for the remote HAR.</description><subject>Channel state information (CSI)</subject><subject>Convolution</subject><subject>Convolutional neural networks</subject><subject>Deep learning</subject><subject>Edge computing</subject><subject>Feature extraction</subject><subject>Human activity recognition</subject><subject>human activity recognition (HAR)</subject><subject>Internet of Things</subject><subject>Internet of Things (IoT)</subject><subject>Lightweight</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>WiFi sensing</subject><subject>Wireless fidelity</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1PwjAUhhujiUT5ASZeNPF62K-tq3cIIpgZEsTgXdO13SyBDduh4d-7BS64Oe-5eN6TnAeAO4wGGCPx-DabLwcEETqgRDCE2AXoEUp4xJKEXJ7t16Afwhoh1NZiLJIe-Fq5bDxcPMGVmzj44cpKbaJnFayBmSu_mz_bTTi2dgczq3zlqhK-18ZuYFF7ON1vVQWHunG_rjnAhdV1WbnG1dUtuCrUJtj-KW_A5-RlOZpG2fx1NhpmkaaUNxHmlhqGeYJtjJhNhEmUUDjJqcHGEJoIVpg01jouUpVqzrQgOc4LQ1KWa8ToDXg43t35-mdvQyPX9d63XwRJBG51EM5RS-EjpX0dgreF3Hm3Vf4gMZKdQ9k5lJ1DeXLYdu6PHWetPeMxTxEl9B_EG2vn</recordid><startdate>20240115</startdate><enddate>20240115</enddate><creator>Deng, Fuxiang</creator><creator>Jovanov, Emil</creator><creator>Song, Houbing</creator><creator>Shi, Weisong</creator><creator>Zhang, Yuan</creator><creator>Xu, Wenyao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5864-4675</orcidid><orcidid>https://orcid.org/0000-0003-2726-2855</orcidid><orcidid>https://orcid.org/0000-0003-2631-9223</orcidid><orcidid>https://orcid.org/0000-0001-6444-9411</orcidid><orcidid>https://orcid.org/0000-0001-7542-8157</orcidid><orcidid>https://orcid.org/0000-0001-6754-3518</orcidid></search><sort><creationdate>20240115</creationdate><title>WiLDAR: WiFi Signal-Based Lightweight Deep Learning Model for Human Activity Recognition</title><author>Deng, Fuxiang ; Jovanov, Emil ; Song, Houbing ; Shi, Weisong ; Zhang, Yuan ; Xu, Wenyao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-17e3d41761e504e69d6a9a16b3d1dd23694fd85cc5f8a8c74c92b1bfd284bc043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Channel state information (CSI)</topic><topic>Convolution</topic><topic>Convolutional neural networks</topic><topic>Deep learning</topic><topic>Edge computing</topic><topic>Feature extraction</topic><topic>Human activity recognition</topic><topic>human activity recognition (HAR)</topic><topic>Internet of Things</topic><topic>Internet of Things (IoT)</topic><topic>Lightweight</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>WiFi sensing</topic><topic>Wireless fidelity</topic><toplevel>online_resources</toplevel><creatorcontrib>Deng, Fuxiang</creatorcontrib><creatorcontrib>Jovanov, Emil</creatorcontrib><creatorcontrib>Song, Houbing</creatorcontrib><creatorcontrib>Shi, Weisong</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Xu, Wenyao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Deng, Fuxiang</au><au>Jovanov, Emil</au><au>Song, Houbing</au><au>Shi, Weisong</au><au>Zhang, Yuan</au><au>Xu, Wenyao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>WiLDAR: WiFi Signal-Based Lightweight Deep Learning Model for Human Activity Recognition</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2024-01-15</date><risdate>2024</risdate><volume>11</volume><issue>2</issue><spage>2899</spage><epage>2908</epage><pages>2899-2908</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>In recent years, the WiFi channel state information (CSI) has been increasingly used for human activity recognition (HAR) during activities of daily living, because of nonintrusiveness and privacy preserving properties. However, most previous works require complex processing of CSI signals, and the large number of classification network parameters significantly increases the recognition time and deployment costs. Accordingly, a WiFi signal-based lightweight deep learning (WiLDAR) network is developed in this study to ensure systematic operation on edge computing devices. We combine the random convolution kernel with deep separable convolution and residual structure, so that WiLDAR can easily extract CSI signal features without filtering and denoising. The parameter number and training time of WiLDAR are, thus, much less than those of previous neural networks. In addition, a tiny HAR system using only Raspberry Pi and router is implemented. Experiments verify that WiLDAR can achieve real-time HAR on Internet of Things devices, which makes HAR deployment more convenient. We test WiLDAR on three different fine-grained action data sets to achieve 99%, 93.5%, and 97.5% recognition accuracy, respectively. The demonstrated learning capability of WiLDAR makes it an excellent option for the remote HAR.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3294004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5864-4675</orcidid><orcidid>https://orcid.org/0000-0003-2726-2855</orcidid><orcidid>https://orcid.org/0000-0003-2631-9223</orcidid><orcidid>https://orcid.org/0000-0001-6444-9411</orcidid><orcidid>https://orcid.org/0000-0001-7542-8157</orcidid><orcidid>https://orcid.org/0000-0001-6754-3518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2024-01, Vol.11 (2), p.2899-2908
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2912942770
source IEEE/IET Electronic Library (IEL)
subjects Channel state information (CSI)
Convolution
Convolutional neural networks
Deep learning
Edge computing
Feature extraction
Human activity recognition
human activity recognition (HAR)
Internet of Things
Internet of Things (IoT)
Lightweight
Machine learning
Monitoring
neural network
Neural networks
Parameters
WiFi sensing
Wireless fidelity
title WiLDAR: WiFi Signal-Based Lightweight Deep Learning Model for Human Activity Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A51%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=WiLDAR:%20WiFi%20Signal-Based%20Lightweight%20Deep%20Learning%20Model%20for%20Human%20Activity%20Recognition&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Deng,%20Fuxiang&rft.date=2024-01-15&rft.volume=11&rft.issue=2&rft.spage=2899&rft.epage=2908&rft.pages=2899-2908&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3294004&rft_dat=%3Cproquest_RIE%3E2912942770%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912942770&rft_id=info:pmid/&rft_ieee_id=10178032&rfr_iscdi=true