Integration of Solar Photovoltaic Plant in the Eastern Sumba Microgrid Using Unit Commitment Optimization
Integrating renewable energy sources (RES) into island microgrids is usually done to provide a cost-effective electricity supply. The integration process is carried out by scheduling generating unit operations with a unit commitment (UC) scheme to ensure low system operating costs. This article disc...
Gespeichert in:
Veröffentlicht in: | Sustainability 2024-01, Vol.16 (1), p.336 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 336 |
container_title | Sustainability |
container_volume | 16 |
creator | Rendroyoko, Ignatius Sinisuka, Ngapuli I Debusschere, Vincent Koesrindartoto, Deddy P Yasirroni, Muhammad |
description | Integrating renewable energy sources (RES) into island microgrids is usually done to provide a cost-effective electricity supply. The integration process is carried out by scheduling generating unit operations with a unit commitment (UC) scheme to ensure low system operating costs. This article discusses developing a UC optimization method for integrating solar photovoltaic plants in Indonesia’s Eastern Sumba microgrid power system. The scope of this study is the optimization algorithm of the UC, which consists of a priority list (PL) for the UC stage and an economic dispatch (ED) that relies on a genetic algorithm (GA) to minimize total operating costs (TOC). The results show that the PL-GA algorithm performs better than the extended priority list (EPL), and combinations of genetic algorithm and Lagrange, by applying continuous problem dispatch and improved binary GA hourly dispatch to meet ramping constraints. The application of RES incentive programs, such as carbon taxes and incentives for RES generation in calculating the TOC, shows an improvement in the financial feasibility analysis of the internal rate of return (IRR) and net present value (NPV) of actual projects in Indonesia. |
doi_str_mv | 10.3390/su16010336 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2912827267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779351363</galeid><sourcerecordid>A779351363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a30df0e518e49600f9e30ef8211ad66621f920e763bf887204d851d7babfd25e3</originalsourceid><addsrcrecordid>eNpVkd9LwzAQx4soOHQv_gUBnxQ682NN28cxpg4mG849l7S9dBltMpNU1L_e6ATd3cMdx-f7PbiLoiuCR4zl-M71hGOCGeMn0YDilMQEJ_j0X38eDZ3b4RCMkZzwQaTm2kNjhVdGIyPR2rTCotXWePNmWi9UhVat0B4pjfwW0Ew4D1ajdd-VAj2pyprGqhptnNIN2mjl0dR0nfIdBNFy71WnPn_cL6MzKVoHw996EW3uZy_Tx3ixfJhPJ4u4YjzzsWC4lhgSksE45xjLHBgGmVFCRM05p0TmFEPKWSmzLKV4XGcJqdNSlLKmCbCL6Prgu7fmtQfni53prQ4rC5oTmtGU8jRQowPViBYKpaXxVlQha-hUZTRIFeaTNM1ZQhhnQXBzJAiMh3ffiN65Yr5-PmZvD2y4jnMWZLG3qhP2oyC4-H5V8fcq9gVOKYUc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912827267</pqid></control><display><type>article</type><title>Integration of Solar Photovoltaic Plant in the Eastern Sumba Microgrid Using Unit Commitment Optimization</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Rendroyoko, Ignatius ; Sinisuka, Ngapuli I ; Debusschere, Vincent ; Koesrindartoto, Deddy P ; Yasirroni, Muhammad</creator><creatorcontrib>Rendroyoko, Ignatius ; Sinisuka, Ngapuli I ; Debusschere, Vincent ; Koesrindartoto, Deddy P ; Yasirroni, Muhammad</creatorcontrib><description>Integrating renewable energy sources (RES) into island microgrids is usually done to provide a cost-effective electricity supply. The integration process is carried out by scheduling generating unit operations with a unit commitment (UC) scheme to ensure low system operating costs. This article discusses developing a UC optimization method for integrating solar photovoltaic plants in Indonesia’s Eastern Sumba microgrid power system. The scope of this study is the optimization algorithm of the UC, which consists of a priority list (PL) for the UC stage and an economic dispatch (ED) that relies on a genetic algorithm (GA) to minimize total operating costs (TOC). The results show that the PL-GA algorithm performs better than the extended priority list (EPL), and combinations of genetic algorithm and Lagrange, by applying continuous problem dispatch and improved binary GA hourly dispatch to meet ramping constraints. The application of RES incentive programs, such as carbon taxes and incentives for RES generation in calculating the TOC, shows an improvement in the financial feasibility analysis of the internal rate of return (IRR) and net present value (NPV) of actual projects in Indonesia.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su16010336</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Alternative energy sources ; Analysis ; Carbon taxes ; Case studies ; Costs ; Diesel engines ; Economic incentives ; Electric power ; Electricity ; Electricity distribution ; Energy storage ; Incentives ; Linear programming ; Mathematical optimization ; Optimization algorithms ; Optimization techniques ; Power supply ; Reserve requirements ; Simulation ; Solar power plants</subject><ispartof>Sustainability, 2024-01, Vol.16 (1), p.336</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a30df0e518e49600f9e30ef8211ad66621f920e763bf887204d851d7babfd25e3</citedby><cites>FETCH-LOGICAL-c368t-a30df0e518e49600f9e30ef8211ad66621f920e763bf887204d851d7babfd25e3</cites><orcidid>0000-0002-7009-8969 ; 0000-0002-4638-1537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rendroyoko, Ignatius</creatorcontrib><creatorcontrib>Sinisuka, Ngapuli I</creatorcontrib><creatorcontrib>Debusschere, Vincent</creatorcontrib><creatorcontrib>Koesrindartoto, Deddy P</creatorcontrib><creatorcontrib>Yasirroni, Muhammad</creatorcontrib><title>Integration of Solar Photovoltaic Plant in the Eastern Sumba Microgrid Using Unit Commitment Optimization</title><title>Sustainability</title><description>Integrating renewable energy sources (RES) into island microgrids is usually done to provide a cost-effective electricity supply. The integration process is carried out by scheduling generating unit operations with a unit commitment (UC) scheme to ensure low system operating costs. This article discusses developing a UC optimization method for integrating solar photovoltaic plants in Indonesia’s Eastern Sumba microgrid power system. The scope of this study is the optimization algorithm of the UC, which consists of a priority list (PL) for the UC stage and an economic dispatch (ED) that relies on a genetic algorithm (GA) to minimize total operating costs (TOC). The results show that the PL-GA algorithm performs better than the extended priority list (EPL), and combinations of genetic algorithm and Lagrange, by applying continuous problem dispatch and improved binary GA hourly dispatch to meet ramping constraints. The application of RES incentive programs, such as carbon taxes and incentives for RES generation in calculating the TOC, shows an improvement in the financial feasibility analysis of the internal rate of return (IRR) and net present value (NPV) of actual projects in Indonesia.</description><subject>Algorithms</subject><subject>Alternative energy sources</subject><subject>Analysis</subject><subject>Carbon taxes</subject><subject>Case studies</subject><subject>Costs</subject><subject>Diesel engines</subject><subject>Economic incentives</subject><subject>Electric power</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Energy storage</subject><subject>Incentives</subject><subject>Linear programming</subject><subject>Mathematical optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Power supply</subject><subject>Reserve requirements</subject><subject>Simulation</subject><subject>Solar power plants</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkd9LwzAQx4soOHQv_gUBnxQ682NN28cxpg4mG849l7S9dBltMpNU1L_e6ATd3cMdx-f7PbiLoiuCR4zl-M71hGOCGeMn0YDilMQEJ_j0X38eDZ3b4RCMkZzwQaTm2kNjhVdGIyPR2rTCotXWePNmWi9UhVat0B4pjfwW0Ew4D1ajdd-VAj2pyprGqhptnNIN2mjl0dR0nfIdBNFy71WnPn_cL6MzKVoHw996EW3uZy_Tx3ixfJhPJ4u4YjzzsWC4lhgSksE45xjLHBgGmVFCRM05p0TmFEPKWSmzLKV4XGcJqdNSlLKmCbCL6Prgu7fmtQfni53prQ4rC5oTmtGU8jRQowPViBYKpaXxVlQha-hUZTRIFeaTNM1ZQhhnQXBzJAiMh3ffiN65Yr5-PmZvD2y4jnMWZLG3qhP2oyC4-H5V8fcq9gVOKYUc</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Rendroyoko, Ignatius</creator><creator>Sinisuka, Ngapuli I</creator><creator>Debusschere, Vincent</creator><creator>Koesrindartoto, Deddy P</creator><creator>Yasirroni, Muhammad</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-7009-8969</orcidid><orcidid>https://orcid.org/0000-0002-4638-1537</orcidid></search><sort><creationdate>20240101</creationdate><title>Integration of Solar Photovoltaic Plant in the Eastern Sumba Microgrid Using Unit Commitment Optimization</title><author>Rendroyoko, Ignatius ; Sinisuka, Ngapuli I ; Debusschere, Vincent ; Koesrindartoto, Deddy P ; Yasirroni, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a30df0e518e49600f9e30ef8211ad66621f920e763bf887204d851d7babfd25e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Alternative energy sources</topic><topic>Analysis</topic><topic>Carbon taxes</topic><topic>Case studies</topic><topic>Costs</topic><topic>Diesel engines</topic><topic>Economic incentives</topic><topic>Electric power</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Energy storage</topic><topic>Incentives</topic><topic>Linear programming</topic><topic>Mathematical optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Power supply</topic><topic>Reserve requirements</topic><topic>Simulation</topic><topic>Solar power plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rendroyoko, Ignatius</creatorcontrib><creatorcontrib>Sinisuka, Ngapuli I</creatorcontrib><creatorcontrib>Debusschere, Vincent</creatorcontrib><creatorcontrib>Koesrindartoto, Deddy P</creatorcontrib><creatorcontrib>Yasirroni, Muhammad</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rendroyoko, Ignatius</au><au>Sinisuka, Ngapuli I</au><au>Debusschere, Vincent</au><au>Koesrindartoto, Deddy P</au><au>Yasirroni, Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Solar Photovoltaic Plant in the Eastern Sumba Microgrid Using Unit Commitment Optimization</atitle><jtitle>Sustainability</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>16</volume><issue>1</issue><spage>336</spage><pages>336-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Integrating renewable energy sources (RES) into island microgrids is usually done to provide a cost-effective electricity supply. The integration process is carried out by scheduling generating unit operations with a unit commitment (UC) scheme to ensure low system operating costs. This article discusses developing a UC optimization method for integrating solar photovoltaic plants in Indonesia’s Eastern Sumba microgrid power system. The scope of this study is the optimization algorithm of the UC, which consists of a priority list (PL) for the UC stage and an economic dispatch (ED) that relies on a genetic algorithm (GA) to minimize total operating costs (TOC). The results show that the PL-GA algorithm performs better than the extended priority list (EPL), and combinations of genetic algorithm and Lagrange, by applying continuous problem dispatch and improved binary GA hourly dispatch to meet ramping constraints. The application of RES incentive programs, such as carbon taxes and incentives for RES generation in calculating the TOC, shows an improvement in the financial feasibility analysis of the internal rate of return (IRR) and net present value (NPV) of actual projects in Indonesia.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su16010336</doi><orcidid>https://orcid.org/0000-0002-7009-8969</orcidid><orcidid>https://orcid.org/0000-0002-4638-1537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2024-01, Vol.16 (1), p.336 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2912827267 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Alternative energy sources Analysis Carbon taxes Case studies Costs Diesel engines Economic incentives Electric power Electricity Electricity distribution Energy storage Incentives Linear programming Mathematical optimization Optimization algorithms Optimization techniques Power supply Reserve requirements Simulation Solar power plants |
title | Integration of Solar Photovoltaic Plant in the Eastern Sumba Microgrid Using Unit Commitment Optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Solar%20Photovoltaic%20Plant%20in%20the%20Eastern%20Sumba%20Microgrid%20Using%20Unit%20Commitment%20Optimization&rft.jtitle=Sustainability&rft.au=Rendroyoko,%20Ignatius&rft.date=2024-01-01&rft.volume=16&rft.issue=1&rft.spage=336&rft.pages=336-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su16010336&rft_dat=%3Cgale_proqu%3EA779351363%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912827267&rft_id=info:pmid/&rft_galeid=A779351363&rfr_iscdi=true |