Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds

Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research letters 2024-01, Vol.19 (1), p.14072
Hauptverfasser: Prėskienis, Vilmantas, Fortier, Daniel, Douglas, Peter M J, Rautio, Milla, Laurion, Isabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 14072
container_title Environmental research letters
container_volume 19
creator Prėskienis, Vilmantas
Fortier, Daniel
Douglas, Peter M J
Rautio, Milla
Laurion, Isabelle
description Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO 2 and CH 4 emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO 2 m −2 yr −1 and ∼250 mmol CH 4 m −2 yr −1 ) compared to ponds with no active shore erosion (∼30 mmol m −2 yr −1 for both GHG). Although most GHGs emitted as CO 2 and CH 4 had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.
doi_str_mv 10.1088/1748-9326/ad1433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912717827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e8fc68a9ee634b1bbb5aa2133669a0a9</doaj_id><sourcerecordid>2912717827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4b3253279dbd1f160bf967c0fec5b0d856562694886cf8646bd5a94273648aa83</originalsourceid><addsrcrecordid>eNp1kb1PHDEQxa0IpMCRPqWlFDQ58Nd67TJC4UNCIgWpnfF6fNnT3Xpj70XKf4-PRQdFqGy9efOb0RtCPnN2wZkxl7xVZmml0JcQuJLyAzk5SEdv_h_JaSlrxhrVtOaE_PqBeQsxpzLRgKsMAaY-DRSGQEvqNxRr6VkoNOT-L-ZCU6SrjDj8TruCdFUruO3L3lVoJW3ptBtCBjqmIZQzchxhU_DTy7sgP6-_P17dLu8fbu6uvt0vO8X4tFReikaK1gYfeOSa-Wh127GIXeNZMI1utNBWGaO7aLTSPjRglWilVgbAyAW5m7khwdqNud9C_ucS9O5ZSHnlIE99t0GHJnbagEXUUnnuvW8ABJdSawsMbGV9mVljTn92WCa3Trs81PWdsFy0vDV18IKw2dXViErGeJjKmdvfxO1Dd_vQ3XyT2nI-t_RpfGVi3jhuHXeMK9YKN4ZYnV__43wX_ATeZ5oz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912717827</pqid></control><display><type>article</type><title>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Prėskienis, Vilmantas ; Fortier, Daniel ; Douglas, Peter M J ; Rautio, Milla ; Laurion, Isabelle</creator><creatorcontrib>Prėskienis, Vilmantas ; Fortier, Daniel ; Douglas, Peter M J ; Rautio, Milla ; Laurion, Isabelle</creatorcontrib><description>Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO 2 and CH 4 emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO 2 m −2 yr −1 and ∼250 mmol CH 4 m −2 yr −1 ) compared to ponds with no active shore erosion (∼30 mmol m −2 yr −1 for both GHG). Although most GHGs emitted as CO 2 and CH 4 had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad1433</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aquatic environment ; Aquatic plants ; Carbon ; Carbon dioxide ; Carbon sources ; Climate change ; Emissions ; Erosion rates ; Global warming ; Greenhouse effect ; greenhouse gas emissions ; Greenhouse gases ; Heterotrophic microorganisms ; Ice cover ; ice-wedge polygons ; Methane ; Microorganisms ; Organic matter ; Organic soils ; Permafrost ; permafrost erosion ; Ponds ; Positive feedback ; Shorelines ; Soil degradation ; Soil erosion ; Soil organic matter ; Taiga &amp; tundra ; thermokarst ; Thickness ; Tundra ; tundra ponds ; Turbidity</subject><ispartof>Environmental research letters, 2024-01, Vol.19 (1), p.14072</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-4b3253279dbd1f160bf967c0fec5b0d856562694886cf8646bd5a94273648aa83</cites><orcidid>0000-0002-4282-6615 ; 0000-0003-0908-6157 ; 0000-0001-8694-3330 ; 0000-0002-2375-9082 ; 0000-0002-8176-2263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ad1433/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Prėskienis, Vilmantas</creatorcontrib><creatorcontrib>Fortier, Daniel</creatorcontrib><creatorcontrib>Douglas, Peter M J</creatorcontrib><creatorcontrib>Rautio, Milla</creatorcontrib><creatorcontrib>Laurion, Isabelle</creatorcontrib><title>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO 2 and CH 4 emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO 2 m −2 yr −1 and ∼250 mmol CH 4 m −2 yr −1 ) compared to ponds with no active shore erosion (∼30 mmol m −2 yr −1 for both GHG). Although most GHGs emitted as CO 2 and CH 4 had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.</description><subject>Aquatic environment</subject><subject>Aquatic plants</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon sources</subject><subject>Climate change</subject><subject>Emissions</subject><subject>Erosion rates</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>Heterotrophic microorganisms</subject><subject>Ice cover</subject><subject>ice-wedge polygons</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Permafrost</subject><subject>permafrost erosion</subject><subject>Ponds</subject><subject>Positive feedback</subject><subject>Shorelines</subject><subject>Soil degradation</subject><subject>Soil erosion</subject><subject>Soil organic matter</subject><subject>Taiga &amp; tundra</subject><subject>thermokarst</subject><subject>Thickness</subject><subject>Tundra</subject><subject>tundra ponds</subject><subject>Turbidity</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kb1PHDEQxa0IpMCRPqWlFDQ58Nd67TJC4UNCIgWpnfF6fNnT3Xpj70XKf4-PRQdFqGy9efOb0RtCPnN2wZkxl7xVZmml0JcQuJLyAzk5SEdv_h_JaSlrxhrVtOaE_PqBeQsxpzLRgKsMAaY-DRSGQEvqNxRr6VkoNOT-L-ZCU6SrjDj8TruCdFUruO3L3lVoJW3ptBtCBjqmIZQzchxhU_DTy7sgP6-_P17dLu8fbu6uvt0vO8X4tFReikaK1gYfeOSa-Wh127GIXeNZMI1utNBWGaO7aLTSPjRglWilVgbAyAW5m7khwdqNud9C_ucS9O5ZSHnlIE99t0GHJnbagEXUUnnuvW8ABJdSawsMbGV9mVljTn92WCa3Trs81PWdsFy0vDV18IKw2dXViErGeJjKmdvfxO1Dd_vQ3XyT2nI-t_RpfGVi3jhuHXeMK9YKN4ZYnV__43wX_ATeZ5oz</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Prėskienis, Vilmantas</creator><creator>Fortier, Daniel</creator><creator>Douglas, Peter M J</creator><creator>Rautio, Milla</creator><creator>Laurion, Isabelle</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4282-6615</orcidid><orcidid>https://orcid.org/0000-0003-0908-6157</orcidid><orcidid>https://orcid.org/0000-0001-8694-3330</orcidid><orcidid>https://orcid.org/0000-0002-2375-9082</orcidid><orcidid>https://orcid.org/0000-0002-8176-2263</orcidid></search><sort><creationdate>20240101</creationdate><title>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</title><author>Prėskienis, Vilmantas ; Fortier, Daniel ; Douglas, Peter M J ; Rautio, Milla ; Laurion, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4b3253279dbd1f160bf967c0fec5b0d856562694886cf8646bd5a94273648aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic environment</topic><topic>Aquatic plants</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon sources</topic><topic>Climate change</topic><topic>Emissions</topic><topic>Erosion rates</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>Heterotrophic microorganisms</topic><topic>Ice cover</topic><topic>ice-wedge polygons</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Permafrost</topic><topic>permafrost erosion</topic><topic>Ponds</topic><topic>Positive feedback</topic><topic>Shorelines</topic><topic>Soil degradation</topic><topic>Soil erosion</topic><topic>Soil organic matter</topic><topic>Taiga &amp; tundra</topic><topic>thermokarst</topic><topic>Thickness</topic><topic>Tundra</topic><topic>tundra ponds</topic><topic>Turbidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prėskienis, Vilmantas</creatorcontrib><creatorcontrib>Fortier, Daniel</creatorcontrib><creatorcontrib>Douglas, Peter M J</creatorcontrib><creatorcontrib>Rautio, Milla</creatorcontrib><creatorcontrib>Laurion, Isabelle</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prėskienis, Vilmantas</au><au>Fortier, Daniel</au><au>Douglas, Peter M J</au><au>Rautio, Milla</au><au>Laurion, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>14072</spage><pages>14072-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO 2 and CH 4 emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO 2 m −2 yr −1 and ∼250 mmol CH 4 m −2 yr −1 ) compared to ponds with no active shore erosion (∼30 mmol m −2 yr −1 for both GHG). Although most GHGs emitted as CO 2 and CH 4 had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad1433</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4282-6615</orcidid><orcidid>https://orcid.org/0000-0003-0908-6157</orcidid><orcidid>https://orcid.org/0000-0001-8694-3330</orcidid><orcidid>https://orcid.org/0000-0002-2375-9082</orcidid><orcidid>https://orcid.org/0000-0002-8176-2263</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1748-9326
ispartof Environmental research letters, 2024-01, Vol.19 (1), p.14072
issn 1748-9326
1748-9326
language eng
recordid cdi_proquest_journals_2912717827
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry
subjects Aquatic environment
Aquatic plants
Carbon
Carbon dioxide
Carbon sources
Climate change
Emissions
Erosion rates
Global warming
Greenhouse effect
greenhouse gas emissions
Greenhouse gases
Heterotrophic microorganisms
Ice cover
ice-wedge polygons
Methane
Microorganisms
Organic matter
Organic soils
Permafrost
permafrost erosion
Ponds
Positive feedback
Shorelines
Soil degradation
Soil erosion
Soil organic matter
Taiga & tundra
thermokarst
Thickness
Tundra
tundra ponds
Turbidity
title Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permafrost%20degradation%20and%20soil%20erosion%20as%20drivers%20of%20greenhouse%20gas%20emissions%20from%20tundra%20ponds&rft.jtitle=Environmental%20research%20letters&rft.au=Pr%C4%97skienis,%20Vilmantas&rft.date=2024-01-01&rft.volume=19&rft.issue=1&rft.spage=14072&rft.pages=14072-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad1433&rft_dat=%3Cproquest_cross%3E2912717827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912717827&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e8fc68a9ee634b1bbb5aa2133669a0a9&rfr_iscdi=true