Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds
Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil or...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2024-01, Vol.19 (1), p.14072 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 14072 |
container_title | Environmental research letters |
container_volume | 19 |
creator | Prėskienis, Vilmantas Fortier, Daniel Douglas, Peter M J Rautio, Milla Laurion, Isabelle |
description | Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO
2
and CH
4
emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO
2
m
−2
yr
−1
and ∼250 mmol CH
4
m
−2
yr
−1
) compared to ponds with no active shore erosion (∼30 mmol m
−2
yr
−1
for both GHG). Although most GHGs emitted as CO
2
and CH
4
had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures. |
doi_str_mv | 10.1088/1748-9326/ad1433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912717827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e8fc68a9ee634b1bbb5aa2133669a0a9</doaj_id><sourcerecordid>2912717827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-4b3253279dbd1f160bf967c0fec5b0d856562694886cf8646bd5a94273648aa83</originalsourceid><addsrcrecordid>eNp1kb1PHDEQxa0IpMCRPqWlFDQ58Nd67TJC4UNCIgWpnfF6fNnT3Xpj70XKf4-PRQdFqGy9efOb0RtCPnN2wZkxl7xVZmml0JcQuJLyAzk5SEdv_h_JaSlrxhrVtOaE_PqBeQsxpzLRgKsMAaY-DRSGQEvqNxRr6VkoNOT-L-ZCU6SrjDj8TruCdFUruO3L3lVoJW3ptBtCBjqmIZQzchxhU_DTy7sgP6-_P17dLu8fbu6uvt0vO8X4tFReikaK1gYfeOSa-Wh127GIXeNZMI1utNBWGaO7aLTSPjRglWilVgbAyAW5m7khwdqNud9C_ucS9O5ZSHnlIE99t0GHJnbagEXUUnnuvW8ABJdSawsMbGV9mVljTn92WCa3Trs81PWdsFy0vDV18IKw2dXViErGeJjKmdvfxO1Dd_vQ3XyT2nI-t_RpfGVi3jhuHXeMK9YKN4ZYnV__43wX_ATeZ5oz</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912717827</pqid></control><display><type>article</type><title>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Free Full-Text Journals in Chemistry</source><creator>Prėskienis, Vilmantas ; Fortier, Daniel ; Douglas, Peter M J ; Rautio, Milla ; Laurion, Isabelle</creator><creatorcontrib>Prėskienis, Vilmantas ; Fortier, Daniel ; Douglas, Peter M J ; Rautio, Milla ; Laurion, Isabelle</creatorcontrib><description>Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO
2
and CH
4
emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO
2
m
−2
yr
−1
and ∼250 mmol CH
4
m
−2
yr
−1
) compared to ponds with no active shore erosion (∼30 mmol m
−2
yr
−1
for both GHG). Although most GHGs emitted as CO
2
and CH
4
had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.</description><identifier>ISSN: 1748-9326</identifier><identifier>EISSN: 1748-9326</identifier><identifier>DOI: 10.1088/1748-9326/ad1433</identifier><identifier>CODEN: ERLNAL</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Aquatic environment ; Aquatic plants ; Carbon ; Carbon dioxide ; Carbon sources ; Climate change ; Emissions ; Erosion rates ; Global warming ; Greenhouse effect ; greenhouse gas emissions ; Greenhouse gases ; Heterotrophic microorganisms ; Ice cover ; ice-wedge polygons ; Methane ; Microorganisms ; Organic matter ; Organic soils ; Permafrost ; permafrost erosion ; Ponds ; Positive feedback ; Shorelines ; Soil degradation ; Soil erosion ; Soil organic matter ; Taiga & tundra ; thermokarst ; Thickness ; Tundra ; tundra ponds ; Turbidity</subject><ispartof>Environmental research letters, 2024-01, Vol.19 (1), p.14072</ispartof><rights>2024 The Author(s). Published by IOP Publishing Ltd</rights><rights>2024 The Author(s). Published by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c401t-4b3253279dbd1f160bf967c0fec5b0d856562694886cf8646bd5a94273648aa83</cites><orcidid>0000-0002-4282-6615 ; 0000-0003-0908-6157 ; 0000-0001-8694-3330 ; 0000-0002-2375-9082 ; 0000-0002-8176-2263</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1748-9326/ad1433/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Prėskienis, Vilmantas</creatorcontrib><creatorcontrib>Fortier, Daniel</creatorcontrib><creatorcontrib>Douglas, Peter M J</creatorcontrib><creatorcontrib>Rautio, Milla</creatorcontrib><creatorcontrib>Laurion, Isabelle</creatorcontrib><title>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</title><title>Environmental research letters</title><addtitle>ERL</addtitle><addtitle>Environ. Res. Lett</addtitle><description>Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO
2
and CH
4
emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO
2
m
−2
yr
−1
and ∼250 mmol CH
4
m
−2
yr
−1
) compared to ponds with no active shore erosion (∼30 mmol m
−2
yr
−1
for both GHG). Although most GHGs emitted as CO
2
and CH
4
had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.</description><subject>Aquatic environment</subject><subject>Aquatic plants</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon sources</subject><subject>Climate change</subject><subject>Emissions</subject><subject>Erosion rates</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>Heterotrophic microorganisms</subject><subject>Ice cover</subject><subject>ice-wedge polygons</subject><subject>Methane</subject><subject>Microorganisms</subject><subject>Organic matter</subject><subject>Organic soils</subject><subject>Permafrost</subject><subject>permafrost erosion</subject><subject>Ponds</subject><subject>Positive feedback</subject><subject>Shorelines</subject><subject>Soil degradation</subject><subject>Soil erosion</subject><subject>Soil organic matter</subject><subject>Taiga & tundra</subject><subject>thermokarst</subject><subject>Thickness</subject><subject>Tundra</subject><subject>tundra ponds</subject><subject>Turbidity</subject><issn>1748-9326</issn><issn>1748-9326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1kb1PHDEQxa0IpMCRPqWlFDQ58Nd67TJC4UNCIgWpnfF6fNnT3Xpj70XKf4-PRQdFqGy9efOb0RtCPnN2wZkxl7xVZmml0JcQuJLyAzk5SEdv_h_JaSlrxhrVtOaE_PqBeQsxpzLRgKsMAaY-DRSGQEvqNxRr6VkoNOT-L-ZCU6SrjDj8TruCdFUruO3L3lVoJW3ptBtCBjqmIZQzchxhU_DTy7sgP6-_P17dLu8fbu6uvt0vO8X4tFReikaK1gYfeOSa-Wh127GIXeNZMI1utNBWGaO7aLTSPjRglWilVgbAyAW5m7khwdqNud9C_ucS9O5ZSHnlIE99t0GHJnbagEXUUnnuvW8ABJdSawsMbGV9mVljTn92WCa3Trs81PWdsFy0vDV18IKw2dXViErGeJjKmdvfxO1Dd_vQ3XyT2nI-t_RpfGVi3jhuHXeMK9YKN4ZYnV__43wX_ATeZ5oz</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Prėskienis, Vilmantas</creator><creator>Fortier, Daniel</creator><creator>Douglas, Peter M J</creator><creator>Rautio, Milla</creator><creator>Laurion, Isabelle</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4282-6615</orcidid><orcidid>https://orcid.org/0000-0003-0908-6157</orcidid><orcidid>https://orcid.org/0000-0001-8694-3330</orcidid><orcidid>https://orcid.org/0000-0002-2375-9082</orcidid><orcidid>https://orcid.org/0000-0002-8176-2263</orcidid></search><sort><creationdate>20240101</creationdate><title>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</title><author>Prėskienis, Vilmantas ; Fortier, Daniel ; Douglas, Peter M J ; Rautio, Milla ; Laurion, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-4b3253279dbd1f160bf967c0fec5b0d856562694886cf8646bd5a94273648aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aquatic environment</topic><topic>Aquatic plants</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon sources</topic><topic>Climate change</topic><topic>Emissions</topic><topic>Erosion rates</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>Heterotrophic microorganisms</topic><topic>Ice cover</topic><topic>ice-wedge polygons</topic><topic>Methane</topic><topic>Microorganisms</topic><topic>Organic matter</topic><topic>Organic soils</topic><topic>Permafrost</topic><topic>permafrost erosion</topic><topic>Ponds</topic><topic>Positive feedback</topic><topic>Shorelines</topic><topic>Soil degradation</topic><topic>Soil erosion</topic><topic>Soil organic matter</topic><topic>Taiga & tundra</topic><topic>thermokarst</topic><topic>Thickness</topic><topic>Tundra</topic><topic>tundra ponds</topic><topic>Turbidity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prėskienis, Vilmantas</creatorcontrib><creatorcontrib>Fortier, Daniel</creatorcontrib><creatorcontrib>Douglas, Peter M J</creatorcontrib><creatorcontrib>Rautio, Milla</creatorcontrib><creatorcontrib>Laurion, Isabelle</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Environmental research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prėskienis, Vilmantas</au><au>Fortier, Daniel</au><au>Douglas, Peter M J</au><au>Rautio, Milla</au><au>Laurion, Isabelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds</atitle><jtitle>Environmental research letters</jtitle><stitle>ERL</stitle><addtitle>Environ. Res. Lett</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>19</volume><issue>1</issue><spage>14072</spage><pages>14072-</pages><issn>1748-9326</issn><eissn>1748-9326</eissn><coden>ERLNAL</coden><abstract>Climate change poses a serious threat to permafrost integrity, with expected warmer winters and increased precipitation, both raising permafrost temperatures and active layer thickness. Under ice-rich conditions, this can lead to increased thermokarst activity and a consequential transfer of soil organic matter to tundra ponds. Although these ponds are known as hotspots for CO
2
and CH
4
emissions, the dominant carbon sources for the production of greenhouse gases (GHGs) are still poorly studied, leading to uncertainty about their positive feedback to climate warming. This study investigates the potential for lateral thermo-erosion to cause increased GHG emissions from small and shallow tundra ponds found in Arctic ice-wedge polygonal landscapes. Detailed mapping of fine-scale erosive features revealed their strong impact on pond limnological characteristics. In addition to increasing organic matter inputs, providing carbon to heterotrophic microorganisms responsible for GHG production, thermokarst soil erosion also increases shore instability and water turbidity, limiting the establishment of aquatic vegetation—conditions that greatly increase GHG emissions from these aquatic systems. Ponds with more than 40% of the shoreline affected by lateral erosion experienced significantly higher rates of GHG emissions (∼1200 mmol CO
2
m
−2
yr
−1
and ∼250 mmol CH
4
m
−2
yr
−1
) compared to ponds with no active shore erosion (∼30 mmol m
−2
yr
−1
for both GHG). Although most GHGs emitted as CO
2
and CH
4
had a modern radiocarbon signature, source apportionment models implied an increased importance of terrestrial carbon being emitted from ponds with erosive shorelines. If primary producers are unable to overcome the limitations associated with permafrost disturbances, this contribution of older carbon stocks may become more significant with rising permafrost temperatures.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-9326/ad1433</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4282-6615</orcidid><orcidid>https://orcid.org/0000-0003-0908-6157</orcidid><orcidid>https://orcid.org/0000-0001-8694-3330</orcidid><orcidid>https://orcid.org/0000-0002-2375-9082</orcidid><orcidid>https://orcid.org/0000-0002-8176-2263</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-9326 |
ispartof | Environmental research letters, 2024-01, Vol.19 (1), p.14072 |
issn | 1748-9326 1748-9326 |
language | eng |
recordid | cdi_proquest_journals_2912717827 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Free Full-Text Journals in Chemistry |
subjects | Aquatic environment Aquatic plants Carbon Carbon dioxide Carbon sources Climate change Emissions Erosion rates Global warming Greenhouse effect greenhouse gas emissions Greenhouse gases Heterotrophic microorganisms Ice cover ice-wedge polygons Methane Microorganisms Organic matter Organic soils Permafrost permafrost erosion Ponds Positive feedback Shorelines Soil degradation Soil erosion Soil organic matter Taiga & tundra thermokarst Thickness Tundra tundra ponds Turbidity |
title | Permafrost degradation and soil erosion as drivers of greenhouse gas emissions from tundra ponds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T19%3A39%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permafrost%20degradation%20and%20soil%20erosion%20as%20drivers%20of%20greenhouse%20gas%20emissions%20from%20tundra%20ponds&rft.jtitle=Environmental%20research%20letters&rft.au=Pr%C4%97skienis,%20Vilmantas&rft.date=2024-01-01&rft.volume=19&rft.issue=1&rft.spage=14072&rft.pages=14072-&rft.issn=1748-9326&rft.eissn=1748-9326&rft.coden=ERLNAL&rft_id=info:doi/10.1088/1748-9326/ad1433&rft_dat=%3Cproquest_cross%3E2912717827%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912717827&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_e8fc68a9ee634b1bbb5aa2133669a0a9&rfr_iscdi=true |