Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations

It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum i u ˙ + Δ 2 u + F ( x , u ) = 0 . Here, the inhomogeneous source may be local F ( x , u ) = | x | - 2 ρ |...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2024, Vol.21 (1), Article 29
Hauptverfasser: Saanouni, Tarek, Feng, Binhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Mediterranean journal of mathematics
container_volume 21
creator Saanouni, Tarek
Feng, Binhua
description It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum i u ˙ + Δ 2 u + F ( x , u ) = 0 . Here, the inhomogeneous source may be local F ( x , u ) = | x | - 2 ρ | u | 2 ( q - 1 ) u or non-local F ( x , u ) = | x | - ρ ( J γ ∗ | · | - ρ | u | p ) | u | p - 2 u . This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020).
doi_str_mv 10.1007/s00009-023-02573-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912680993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912680993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-24b291ecd1623055ec7dc95922d1ca2b531a0960a41b375b0b36a51288a7cfa23</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdfQmmWSapZTWFooFf9Yhk8m0U9qkTWYWfTFfwBczdkR3Bi7Jhfude3IQuiVwTwCKhwjpSAyUpeIFw-QMDYgQgHnO8_Pfdy4u0VWMGwAqCaMD9DJxNqyO2avRbWtD41ZZ7UP27B0Oumr0Npu7td_5lXXWdzGb-i60a7wMlQ0JWofPjypBqZkcOt023sVrdFHrbbQ3P_cQvU8nb-MZXiyf5uPHBTa0gBbTvEwerKmIoAw4t6aojOSS0ooYTUvOiAYpQOekZAUvoWRCc0JHI12YWlM2RHe97j74Q2djqzbJnEsrVRKmYgRSsjRF-ykTfIzB1mofmp0OR0VAfWen-uxUyk6dslMkQayH4j6cfvcn_Q_1BZJPceo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912680993</pqid></control><display><type>article</type><title>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saanouni, Tarek ; Feng, Binhua</creator><creatorcontrib>Saanouni, Tarek ; Feng, Binhua</creatorcontrib><description>It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum i u ˙ + Δ 2 u + F ( x , u ) = 0 . Here, the inhomogeneous source may be local F ( x , u ) = | x | - 2 ρ | u | 2 ( q - 1 ) u or non-local F ( x , u ) = | x | - ρ ( J γ ∗ | · | - ρ | u | p ) | u | p - 2 u . This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020).</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-023-02573-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Scattering ; Schrodinger equation</subject><ispartof>Mediterranean journal of mathematics, 2024, Vol.21 (1), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-24b291ecd1623055ec7dc95922d1ca2b531a0960a41b375b0b36a51288a7cfa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-023-02573-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-023-02573-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saanouni, Tarek</creatorcontrib><creatorcontrib>Feng, Binhua</creatorcontrib><title>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum i u ˙ + Δ 2 u + F ( x , u ) = 0 . Here, the inhomogeneous source may be local F ( x , u ) = | x | - 2 ρ | u | 2 ( q - 1 ) u or non-local F ( x , u ) = | x | - ρ ( J γ ∗ | · | - ρ | u | p ) | u | p - 2 u . This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020).</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Scattering</subject><subject>Schrodinger equation</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdfQmmWSapZTWFooFf9Yhk8m0U9qkTWYWfTFfwBczdkR3Bi7Jhfude3IQuiVwTwCKhwjpSAyUpeIFw-QMDYgQgHnO8_Pfdy4u0VWMGwAqCaMD9DJxNqyO2avRbWtD41ZZ7UP27B0Oumr0Npu7td_5lXXWdzGb-i60a7wMlQ0JWofPjypBqZkcOt023sVrdFHrbbQ3P_cQvU8nb-MZXiyf5uPHBTa0gBbTvEwerKmIoAw4t6aojOSS0ooYTUvOiAYpQOekZAUvoWRCc0JHI12YWlM2RHe97j74Q2djqzbJnEsrVRKmYgRSsjRF-ykTfIzB1mofmp0OR0VAfWen-uxUyk6dslMkQayH4j6cfvcn_Q_1BZJPceo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saanouni, Tarek</creator><creator>Feng, Binhua</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</title><author>Saanouni, Tarek ; Feng, Binhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-24b291ecd1623055ec7dc95922d1ca2b531a0960a41b375b0b36a51288a7cfa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Scattering</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saanouni, Tarek</creatorcontrib><creatorcontrib>Feng, Binhua</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saanouni, Tarek</au><au>Feng, Binhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><artnum>29</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum i u ˙ + Δ 2 u + F ( x , u ) = 0 . Here, the inhomogeneous source may be local F ( x , u ) = | x | - 2 ρ | u | 2 ( q - 1 ) u or non-local F ( x , u ) = | x | - ρ ( J γ ∗ | · | - ρ | u | p ) | u | p - 2 u . This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-023-02573-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2024, Vol.21 (1), Article 29
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2912680993
source SpringerLink Journals - AutoHoldings
subjects Mathematics
Mathematics and Statistics
Scattering
Schrodinger equation
title Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Scattering%20for%20Non-radial%20Inhomogeneous%20Fourth-Order%20Schr%C3%B6dinger%20Equations&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Saanouni,%20Tarek&rft.date=2024&rft.volume=21&rft.issue=1&rft.artnum=29&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-023-02573-1&rft_dat=%3Cproquest_cross%3E2912680993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912680993&rft_id=info:pmid/&rfr_iscdi=true