Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations
It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum i u ˙ + Δ 2 u + F ( x , u ) = 0 . Here, the inhomogeneous source may be local F ( x , u ) = | x | - 2 ρ |...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2024, Vol.21 (1), Article 29 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mediterranean journal of mathematics |
container_volume | 21 |
creator | Saanouni, Tarek Feng, Binhua |
description | It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum
i
u
˙
+
Δ
2
u
+
F
(
x
,
u
)
=
0
.
Here, the inhomogeneous source may be local
F
(
x
,
u
)
=
|
x
|
-
2
ρ
|
u
|
2
(
q
-
1
)
u
or non-local
F
(
x
,
u
)
=
|
x
|
-
ρ
(
J
γ
∗
|
·
|
-
ρ
|
u
|
p
)
|
u
|
p
-
2
u
. This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020). |
doi_str_mv | 10.1007/s00009-023-02573-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912680993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912680993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-24b291ecd1623055ec7dc95922d1ca2b531a0960a41b375b0b36a51288a7cfa23</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4GrAdfQmmWSapZTWFooFf9Yhk8m0U9qkTWYWfTFfwBczdkR3Bi7Jhfude3IQuiVwTwCKhwjpSAyUpeIFw-QMDYgQgHnO8_Pfdy4u0VWMGwAqCaMD9DJxNqyO2avRbWtD41ZZ7UP27B0Oumr0Npu7td_5lXXWdzGb-i60a7wMlQ0JWofPjypBqZkcOt023sVrdFHrbbQ3P_cQvU8nb-MZXiyf5uPHBTa0gBbTvEwerKmIoAw4t6aojOSS0ooYTUvOiAYpQOekZAUvoWRCc0JHI12YWlM2RHe97j74Q2djqzbJnEsrVRKmYgRSsjRF-ykTfIzB1mofmp0OR0VAfWen-uxUyk6dslMkQayH4j6cfvcn_Q_1BZJPceo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912680993</pqid></control><display><type>article</type><title>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Saanouni, Tarek ; Feng, Binhua</creator><creatorcontrib>Saanouni, Tarek ; Feng, Binhua</creatorcontrib><description>It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum
i
u
˙
+
Δ
2
u
+
F
(
x
,
u
)
=
0
.
Here, the inhomogeneous source may be local
F
(
x
,
u
)
=
|
x
|
-
2
ρ
|
u
|
2
(
q
-
1
)
u
or non-local
F
(
x
,
u
)
=
|
x
|
-
ρ
(
J
γ
∗
|
·
|
-
ρ
|
u
|
p
)
|
u
|
p
-
2
u
. This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020).</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-023-02573-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Scattering ; Schrodinger equation</subject><ispartof>Mediterranean journal of mathematics, 2024, Vol.21 (1), Article 29</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-24b291ecd1623055ec7dc95922d1ca2b531a0960a41b375b0b36a51288a7cfa23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-023-02573-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-023-02573-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Saanouni, Tarek</creatorcontrib><creatorcontrib>Feng, Binhua</creatorcontrib><title>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum
i
u
˙
+
Δ
2
u
+
F
(
x
,
u
)
=
0
.
Here, the inhomogeneous source may be local
F
(
x
,
u
)
=
|
x
|
-
2
ρ
|
u
|
2
(
q
-
1
)
u
or non-local
F
(
x
,
u
)
=
|
x
|
-
ρ
(
J
γ
∗
|
·
|
-
ρ
|
u
|
p
)
|
u
|
p
-
2
u
. This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020).</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Scattering</subject><subject>Schrodinger equation</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4GrAdfQmmWSapZTWFooFf9Yhk8m0U9qkTWYWfTFfwBczdkR3Bi7Jhfude3IQuiVwTwCKhwjpSAyUpeIFw-QMDYgQgHnO8_Pfdy4u0VWMGwAqCaMD9DJxNqyO2avRbWtD41ZZ7UP27B0Oumr0Npu7td_5lXXWdzGb-i60a7wMlQ0JWofPjypBqZkcOt023sVrdFHrbbQ3P_cQvU8nb-MZXiyf5uPHBTa0gBbTvEwerKmIoAw4t6aojOSS0ooYTUvOiAYpQOekZAUvoWRCc0JHI12YWlM2RHe97j74Q2djqzbJnEsrVRKmYgRSsjRF-ykTfIzB1mofmp0OR0VAfWen-uxUyk6dslMkQayH4j6cfvcn_Q_1BZJPceo</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Saanouni, Tarek</creator><creator>Feng, Binhua</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</title><author>Saanouni, Tarek ; Feng, Binhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-24b291ecd1623055ec7dc95922d1ca2b531a0960a41b375b0b36a51288a7cfa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Scattering</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saanouni, Tarek</creatorcontrib><creatorcontrib>Feng, Binhua</creatorcontrib><collection>CrossRef</collection><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saanouni, Tarek</au><au>Feng, Binhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><artnum>29</artnum><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>It is the goal of this manuscript to establish the scattering of global solutions to the following bi-harmonic Schrödinger equation, in the focusing inter-critical regime, with non-radial datum
i
u
˙
+
Δ
2
u
+
F
(
x
,
u
)
=
0
.
Here, the inhomogeneous source may be local
F
(
x
,
u
)
=
|
x
|
-
2
ρ
|
u
|
2
(
q
-
1
)
u
or non-local
F
(
x
,
u
)
=
|
x
|
-
ρ
(
J
γ
∗
|
·
|
-
ρ
|
u
|
p
)
|
u
|
p
-
2
u
. This work is a natural extension of the paper by the first author (Saanouni in Calc Var 60:113, 2021). Here, one uses a new approach due to Dodson–Murphy (Proc Am Math Soc 145(11):4859–4867, 2017) and avoids the concentration-compactness method, which needs a heavy procedure in order to obtain the requested estimates. The novelty of this note is twice. First, one removes the spherically symmetric assumption and second, one describes the threshold using some non-conserved quantities in the spirit of the recent paper (Dinh in Discrete Contin Dyn Syst 40(11):6441–6471, 2020).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-023-02573-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2024, Vol.21 (1), Article 29 |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2912680993 |
source | SpringerLink Journals - AutoHoldings |
subjects | Mathematics Mathematics and Statistics Scattering Schrodinger equation |
title | Energy Scattering for Non-radial Inhomogeneous Fourth-Order Schrödinger Equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy%20Scattering%20for%20Non-radial%20Inhomogeneous%20Fourth-Order%20Schr%C3%B6dinger%20Equations&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Saanouni,%20Tarek&rft.date=2024&rft.volume=21&rft.issue=1&rft.artnum=29&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-023-02573-1&rft_dat=%3Cproquest_cross%3E2912680993%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912680993&rft_id=info:pmid/&rfr_iscdi=true |