A remark on generalized abundance for surfaces
Let ( X , Δ ) be a projective klt pair of dimension 2 and let L be a nef Cartier divisor on X such that K X + Δ + L is nef. As a complement to the Generalized Abundance Conjecture by Lazić and Peternell, we prove that if K X + Δ and L are not proportional modulo numerical equivalence, then K X + Δ +...
Gespeichert in:
Veröffentlicht in: | European journal of mathematics 2024-03, Vol.10 (1), Article 7 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
X
,
Δ
)
be a projective klt pair of dimension 2 and let
L
be a nef Cartier divisor on
X
such that
K
X
+
Δ
+
L
is nef. As a complement to the Generalized Abundance Conjecture by Lazić and Peternell, we prove that if
K
X
+
Δ
and
L
are not proportional modulo numerical equivalence, then
K
X
+
Δ
+
L
is semiample. An example due to Lazić shows that this is no longer true in any dimension
n
⩾
3
. |
---|---|
ISSN: | 2199-675X 2199-6768 |
DOI: | 10.1007/s40879-023-00716-y |