Dual-Safety Knowledge Graph Completion for Process Industry

With the rise of Industry 4.0, control systems have taken on increasing importance in industrial processes, and ensuring their security has become a pressing issue. While recent research has focused on cybersecurity threats, the security risks inherent to industrial processes themselves have been ov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2024-01, Vol.13 (1), p.214
Hauptverfasser: Wang, Lingzhi, Li, Haotian, Wang, Wei, Xin, Guodong, Wei, Yuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 214
container_title Electronics (Basel)
container_volume 13
creator Wang, Lingzhi
Li, Haotian
Wang, Wei
Xin, Guodong
Wei, Yuliang
description With the rise of Industry 4.0, control systems have taken on increasing importance in industrial processes, and ensuring their security has become a pressing issue. While recent research has focused on cybersecurity threats, the security risks inherent to industrial processes themselves have been overlooked. Additionally, existing tools cannot simultaneously analyze both cyber vulnerabilities and processes anomaly in industrial settings. This paper aims to address these issues through two main contributions. First, we develop a knowledge graph to integrate information on security risks across cybersecurity and industrial processes, providing a foundation for comprehensively assessing threats. Second, we apply the link prediction task to the knowledge graph, introducing an embedding-based approach to unveil previously undiscovered knowledge. Our experiments demonstrate that the proposed method exhibits comparable performance on link prediction and is capable of mining valuable and diverse potential risks in industrial processes.
doi_str_mv 10.3390/electronics13010214
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2912647209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A779132778</galeid><sourcerecordid>A779132778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-5a374ccb6b8436d9f517dfabed647874eb25f6ef58c8c69a0328dfc95536cd383</originalsourceid><addsrcrecordid>eNptUE1PwzAMjRBITGO_gEslzh35aJtGnKYBY2ISSMA5ShNndOqSkrRC-_dkGgcO2Adb1vN79kPomuA5YwLfQgd6CN61OhKGCaakOEMTirnIBRX0_E9_iWYx7nAKQVjN8ATd3Y-qy9-UheGQPTv_3YHZQrYKqv_Mln7fdzC03mXWh-w1eA0xZmtnxjiEwxW6sKqLMPutU_Tx-PC-fMo3L6v1crHJNSNkyEvFeKF1UzV1wSojbEm4saoBUxW85gU0tLQV2LLWta6EwozWxmpRlqzSJp05RTcn3j74rxHiIHd-DC5JSioITSwUi4San1Bb1YFsnfVDUDqlgX2rvQPbpvmC8_Q65fxIy04LOvgYA1jZh3avwkESLI_Oyn-cZT-gKW5J</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912647209</pqid></control><display><type>article</type><title>Dual-Safety Knowledge Graph Completion for Process Industry</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Wang, Lingzhi ; Li, Haotian ; Wang, Wei ; Xin, Guodong ; Wei, Yuliang</creator><creatorcontrib>Wang, Lingzhi ; Li, Haotian ; Wang, Wei ; Xin, Guodong ; Wei, Yuliang</creatorcontrib><description>With the rise of Industry 4.0, control systems have taken on increasing importance in industrial processes, and ensuring their security has become a pressing issue. While recent research has focused on cybersecurity threats, the security risks inherent to industrial processes themselves have been overlooked. Additionally, existing tools cannot simultaneously analyze both cyber vulnerabilities and processes anomaly in industrial settings. This paper aims to address these issues through two main contributions. First, we develop a knowledge graph to integrate information on security risks across cybersecurity and industrial processes, providing a foundation for comprehensively assessing threats. Second, we apply the link prediction task to the knowledge graph, introducing an embedding-based approach to unveil previously undiscovered knowledge. Our experiments demonstrate that the proposed method exhibits comparable performance on link prediction and is capable of mining valuable and diverse potential risks in industrial processes.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13010214</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Control systems ; Cybersecurity ; Cyberterrorism ; Data security ; Graphs ; Industrial management ; Industry 4.0 ; Information retrieval ; Knowledge representation ; Mathematical optimization ; Natural language processing ; Neural networks ; Prevention ; Security management ; Semantics ; Sensors ; Technology application ; Threat evaluation</subject><ispartof>Electronics (Basel), 2024-01, Vol.13 (1), p.214</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-5a374ccb6b8436d9f517dfabed647874eb25f6ef58c8c69a0328dfc95536cd383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Lingzhi</creatorcontrib><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xin, Guodong</creatorcontrib><creatorcontrib>Wei, Yuliang</creatorcontrib><title>Dual-Safety Knowledge Graph Completion for Process Industry</title><title>Electronics (Basel)</title><description>With the rise of Industry 4.0, control systems have taken on increasing importance in industrial processes, and ensuring their security has become a pressing issue. While recent research has focused on cybersecurity threats, the security risks inherent to industrial processes themselves have been overlooked. Additionally, existing tools cannot simultaneously analyze both cyber vulnerabilities and processes anomaly in industrial settings. This paper aims to address these issues through two main contributions. First, we develop a knowledge graph to integrate information on security risks across cybersecurity and industrial processes, providing a foundation for comprehensively assessing threats. Second, we apply the link prediction task to the knowledge graph, introducing an embedding-based approach to unveil previously undiscovered knowledge. Our experiments demonstrate that the proposed method exhibits comparable performance on link prediction and is capable of mining valuable and diverse potential risks in industrial processes.</description><subject>Analysis</subject><subject>Control systems</subject><subject>Cybersecurity</subject><subject>Cyberterrorism</subject><subject>Data security</subject><subject>Graphs</subject><subject>Industrial management</subject><subject>Industry 4.0</subject><subject>Information retrieval</subject><subject>Knowledge representation</subject><subject>Mathematical optimization</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Prevention</subject><subject>Security management</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Technology application</subject><subject>Threat evaluation</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUE1PwzAMjRBITGO_gEslzh35aJtGnKYBY2ISSMA5ShNndOqSkrRC-_dkGgcO2Adb1vN79kPomuA5YwLfQgd6CN61OhKGCaakOEMTirnIBRX0_E9_iWYx7nAKQVjN8ATd3Y-qy9-UheGQPTv_3YHZQrYKqv_Mln7fdzC03mXWh-w1eA0xZmtnxjiEwxW6sKqLMPutU_Tx-PC-fMo3L6v1crHJNSNkyEvFeKF1UzV1wSojbEm4saoBUxW85gU0tLQV2LLWta6EwozWxmpRlqzSJp05RTcn3j74rxHiIHd-DC5JSioITSwUi4San1Bb1YFsnfVDUDqlgX2rvQPbpvmC8_Q65fxIy04LOvgYA1jZh3avwkESLI_Oyn-cZT-gKW5J</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Wang, Lingzhi</creator><creator>Li, Haotian</creator><creator>Wang, Wei</creator><creator>Xin, Guodong</creator><creator>Wei, Yuliang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20240101</creationdate><title>Dual-Safety Knowledge Graph Completion for Process Industry</title><author>Wang, Lingzhi ; Li, Haotian ; Wang, Wei ; Xin, Guodong ; Wei, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-5a374ccb6b8436d9f517dfabed647874eb25f6ef58c8c69a0328dfc95536cd383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Control systems</topic><topic>Cybersecurity</topic><topic>Cyberterrorism</topic><topic>Data security</topic><topic>Graphs</topic><topic>Industrial management</topic><topic>Industry 4.0</topic><topic>Information retrieval</topic><topic>Knowledge representation</topic><topic>Mathematical optimization</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Prevention</topic><topic>Security management</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Technology application</topic><topic>Threat evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lingzhi</creatorcontrib><creatorcontrib>Li, Haotian</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Xin, Guodong</creatorcontrib><creatorcontrib>Wei, Yuliang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lingzhi</au><au>Li, Haotian</au><au>Wang, Wei</au><au>Xin, Guodong</au><au>Wei, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-Safety Knowledge Graph Completion for Process Industry</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>13</volume><issue>1</issue><spage>214</spage><pages>214-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>With the rise of Industry 4.0, control systems have taken on increasing importance in industrial processes, and ensuring their security has become a pressing issue. While recent research has focused on cybersecurity threats, the security risks inherent to industrial processes themselves have been overlooked. Additionally, existing tools cannot simultaneously analyze both cyber vulnerabilities and processes anomaly in industrial settings. This paper aims to address these issues through two main contributions. First, we develop a knowledge graph to integrate information on security risks across cybersecurity and industrial processes, providing a foundation for comprehensively assessing threats. Second, we apply the link prediction task to the knowledge graph, introducing an embedding-based approach to unveil previously undiscovered knowledge. Our experiments demonstrate that the proposed method exhibits comparable performance on link prediction and is capable of mining valuable and diverse potential risks in industrial processes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13010214</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2024-01, Vol.13 (1), p.214
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2912647209
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Analysis
Control systems
Cybersecurity
Cyberterrorism
Data security
Graphs
Industrial management
Industry 4.0
Information retrieval
Knowledge representation
Mathematical optimization
Natural language processing
Neural networks
Prevention
Security management
Semantics
Sensors
Technology application
Threat evaluation
title Dual-Safety Knowledge Graph Completion for Process Industry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A49%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-Safety%20Knowledge%20Graph%20Completion%20for%20Process%20Industry&rft.jtitle=Electronics%20(Basel)&rft.au=Wang,%20Lingzhi&rft.date=2024-01-01&rft.volume=13&rft.issue=1&rft.spage=214&rft.pages=214-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13010214&rft_dat=%3Cgale_proqu%3EA779132778%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912647209&rft_id=info:pmid/&rft_galeid=A779132778&rfr_iscdi=true