Review of Separator Modification Strategies: Targeting Undesired Anion Transport in Room Temperature Sodium–Sulfur/Selenium/Iodine Batteries
Rechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I 2 ) batteries are regarded as promising candidates for large‐scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I 2 batteries ar...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-01, Vol.34 (2) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Xu, Jing Qiu, Yashuang Yang, Jianhao Li, Haolin Han, Pingan Jin, Yang Liu, Hao Sun, Bing Wang, Guoxiu |
description | Rechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I
2
) batteries are regarded as promising candidates for large‐scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I
2
batteries are still restricted by several inherent issues, including the “shuttle effect” of polysulfides/polyselenides/polyiodides (PSs/PSes/PIs), sluggish kinetics of the conversion reactions at the cathodes, and Na dendrite growth at the anodes. Among these challenges, uncontrolled “shuttle effect” of PSs/PSes/PIs is a major contributing factor for the irreversible loss of active cathode materials and severe side reactions on Na metal anodes, leading to rapid failure of the batteries. Separator modification has been demonstrated to be an effective strategy to suppress the shuttling of PSs/PSes/PIs. Herein, the latest achievement in modifying separators for high‐performance Na–S/Se/I
2
batteries is comprehensively reviewed. The reaction mechanisms of each battery system are first discussed. Then, strategies of separator modification based on the different functions for regulating the transportation of PSs/PSes/PIs are summarized, including applying electrostatic repulsive interaction, introducing conductive layers, improving sieving effects, enhancing chemisorption capability, and adding efficient electrocatalysts. Finally, future perspectives on the practical application of modified separators in high‐energy rechargeable batteries are provided. |
doi_str_mv | 10.1002/adfm.202306206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912166598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912166598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-78b3bf72ffb2101a2be0cec86fddc5183f45ed2e2a7eb5540f5eb5e41f8fe9723</originalsourceid><addsrcrecordid>eNo9UEtLAzEYDKJgrV49Bzy3zWNf9VaLj0JF6G7B25Ld_VJSusmaZBVv_gIv_kN_iSmVnuZjZr4ZGISuKRlTQthENLIdM8I4SRhJTtCAJjQZccKy0-NNX8_RhXNbQmia8miAvlfwruADG4lz6IQV3lj8bBolVS28MhrnPpCwUeBucSHsBrzSG7zWDThlocEzvXcVVmjXGeux0nhlTIsLaDsIr70FnIfAvv39-sn7neztJIcd6MBMFkHQgO-E92BDxSU6k2Ln4Oofh2j9cF_Mn0bLl8fFfLYc1ZykfpRmFa9kyqSsGCVUsApIDXWWyKapY5pxGcXQMGAihSqOIyLjgBBRmUmYpowP0c0ht7PmrQfny63prQ6VJZtSRpMknmbBNT64amucsyDLzqpW2M-SknK_ebnfvDxuzv8AMsx56w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912166598</pqid></control><display><type>article</type><title>Review of Separator Modification Strategies: Targeting Undesired Anion Transport in Room Temperature Sodium–Sulfur/Selenium/Iodine Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Jing ; Qiu, Yashuang ; Yang, Jianhao ; Li, Haolin ; Han, Pingan ; Jin, Yang ; Liu, Hao ; Sun, Bing ; Wang, Guoxiu</creator><creatorcontrib>Xu, Jing ; Qiu, Yashuang ; Yang, Jianhao ; Li, Haolin ; Han, Pingan ; Jin, Yang ; Liu, Hao ; Sun, Bing ; Wang, Guoxiu</creatorcontrib><description>Rechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I
2
) batteries are regarded as promising candidates for large‐scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I
2
batteries are still restricted by several inherent issues, including the “shuttle effect” of polysulfides/polyselenides/polyiodides (PSs/PSes/PIs), sluggish kinetics of the conversion reactions at the cathodes, and Na dendrite growth at the anodes. Among these challenges, uncontrolled “shuttle effect” of PSs/PSes/PIs is a major contributing factor for the irreversible loss of active cathode materials and severe side reactions on Na metal anodes, leading to rapid failure of the batteries. Separator modification has been demonstrated to be an effective strategy to suppress the shuttling of PSs/PSes/PIs. Herein, the latest achievement in modifying separators for high‐performance Na–S/Se/I
2
batteries is comprehensively reviewed. The reaction mechanisms of each battery system are first discussed. Then, strategies of separator modification based on the different functions for regulating the transportation of PSs/PSes/PIs are summarized, including applying electrostatic repulsive interaction, introducing conductive layers, improving sieving effects, enhancing chemisorption capability, and adding efficient electrocatalysts. Finally, future perspectives on the practical application of modified separators in high‐energy rechargeable batteries are provided.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202306206</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Batteries ; Cathodes ; Chemisorption ; Electrocatalysts ; Electrode materials ; Energy storage ; Iodine ; Reaction mechanisms ; Rechargeable batteries ; Room temperature ; Selenium ; Separators ; Sodium ; Storage systems ; Sulfur</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (2)</ispartof><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-78b3bf72ffb2101a2be0cec86fddc5183f45ed2e2a7eb5540f5eb5e41f8fe9723</citedby><cites>FETCH-LOGICAL-c307t-78b3bf72ffb2101a2be0cec86fddc5183f45ed2e2a7eb5540f5eb5e41f8fe9723</cites><orcidid>0000-0003-4295-8578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Qiu, Yashuang</creatorcontrib><creatorcontrib>Yang, Jianhao</creatorcontrib><creatorcontrib>Li, Haolin</creatorcontrib><creatorcontrib>Han, Pingan</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Sun, Bing</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><title>Review of Separator Modification Strategies: Targeting Undesired Anion Transport in Room Temperature Sodium–Sulfur/Selenium/Iodine Batteries</title><title>Advanced functional materials</title><description>Rechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I
2
) batteries are regarded as promising candidates for large‐scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I
2
batteries are still restricted by several inherent issues, including the “shuttle effect” of polysulfides/polyselenides/polyiodides (PSs/PSes/PIs), sluggish kinetics of the conversion reactions at the cathodes, and Na dendrite growth at the anodes. Among these challenges, uncontrolled “shuttle effect” of PSs/PSes/PIs is a major contributing factor for the irreversible loss of active cathode materials and severe side reactions on Na metal anodes, leading to rapid failure of the batteries. Separator modification has been demonstrated to be an effective strategy to suppress the shuttling of PSs/PSes/PIs. Herein, the latest achievement in modifying separators for high‐performance Na–S/Se/I
2
batteries is comprehensively reviewed. The reaction mechanisms of each battery system are first discussed. Then, strategies of separator modification based on the different functions for regulating the transportation of PSs/PSes/PIs are summarized, including applying electrostatic repulsive interaction, introducing conductive layers, improving sieving effects, enhancing chemisorption capability, and adding efficient electrocatalysts. Finally, future perspectives on the practical application of modified separators in high‐energy rechargeable batteries are provided.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Cathodes</subject><subject>Chemisorption</subject><subject>Electrocatalysts</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Iodine</subject><subject>Reaction mechanisms</subject><subject>Rechargeable batteries</subject><subject>Room temperature</subject><subject>Selenium</subject><subject>Separators</subject><subject>Sodium</subject><subject>Storage systems</subject><subject>Sulfur</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLAzEYDKJgrV49Bzy3zWNf9VaLj0JF6G7B25Ld_VJSusmaZBVv_gIv_kN_iSmVnuZjZr4ZGISuKRlTQthENLIdM8I4SRhJTtCAJjQZccKy0-NNX8_RhXNbQmia8miAvlfwruADG4lz6IQV3lj8bBolVS28MhrnPpCwUeBucSHsBrzSG7zWDThlocEzvXcVVmjXGeux0nhlTIsLaDsIr70FnIfAvv39-sn7neztJIcd6MBMFkHQgO-E92BDxSU6k2Ln4Oofh2j9cF_Mn0bLl8fFfLYc1ZykfpRmFa9kyqSsGCVUsApIDXWWyKapY5pxGcXQMGAihSqOIyLjgBBRmUmYpowP0c0ht7PmrQfny63prQ6VJZtSRpMknmbBNT64amucsyDLzqpW2M-SknK_ebnfvDxuzv8AMsx56w</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Xu, Jing</creator><creator>Qiu, Yashuang</creator><creator>Yang, Jianhao</creator><creator>Li, Haolin</creator><creator>Han, Pingan</creator><creator>Jin, Yang</creator><creator>Liu, Hao</creator><creator>Sun, Bing</creator><creator>Wang, Guoxiu</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid></search><sort><creationdate>20240109</creationdate><title>Review of Separator Modification Strategies: Targeting Undesired Anion Transport in Room Temperature Sodium–Sulfur/Selenium/Iodine Batteries</title><author>Xu, Jing ; Qiu, Yashuang ; Yang, Jianhao ; Li, Haolin ; Han, Pingan ; Jin, Yang ; Liu, Hao ; Sun, Bing ; Wang, Guoxiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-78b3bf72ffb2101a2be0cec86fddc5183f45ed2e2a7eb5540f5eb5e41f8fe9723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Cathodes</topic><topic>Chemisorption</topic><topic>Electrocatalysts</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Iodine</topic><topic>Reaction mechanisms</topic><topic>Rechargeable batteries</topic><topic>Room temperature</topic><topic>Selenium</topic><topic>Separators</topic><topic>Sodium</topic><topic>Storage systems</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jing</creatorcontrib><creatorcontrib>Qiu, Yashuang</creatorcontrib><creatorcontrib>Yang, Jianhao</creatorcontrib><creatorcontrib>Li, Haolin</creatorcontrib><creatorcontrib>Han, Pingan</creatorcontrib><creatorcontrib>Jin, Yang</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Sun, Bing</creatorcontrib><creatorcontrib>Wang, Guoxiu</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jing</au><au>Qiu, Yashuang</au><au>Yang, Jianhao</au><au>Li, Haolin</au><au>Han, Pingan</au><au>Jin, Yang</au><au>Liu, Hao</au><au>Sun, Bing</au><au>Wang, Guoxiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of Separator Modification Strategies: Targeting Undesired Anion Transport in Room Temperature Sodium–Sulfur/Selenium/Iodine Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-09</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Rechargeable sodium–sulfur/selenium/iodine (Na–S/Se/I
2
) batteries are regarded as promising candidates for large‐scale energy storage systems, with the advantages of high energy density, low cost, and environmental friendliness. However, the electrochemical performances of Na–S/Se/I
2
batteries are still restricted by several inherent issues, including the “shuttle effect” of polysulfides/polyselenides/polyiodides (PSs/PSes/PIs), sluggish kinetics of the conversion reactions at the cathodes, and Na dendrite growth at the anodes. Among these challenges, uncontrolled “shuttle effect” of PSs/PSes/PIs is a major contributing factor for the irreversible loss of active cathode materials and severe side reactions on Na metal anodes, leading to rapid failure of the batteries. Separator modification has been demonstrated to be an effective strategy to suppress the shuttling of PSs/PSes/PIs. Herein, the latest achievement in modifying separators for high‐performance Na–S/Se/I
2
batteries is comprehensively reviewed. The reaction mechanisms of each battery system are first discussed. Then, strategies of separator modification based on the different functions for regulating the transportation of PSs/PSes/PIs are summarized, including applying electrostatic repulsive interaction, introducing conductive layers, improving sieving effects, enhancing chemisorption capability, and adding efficient electrocatalysts. Finally, future perspectives on the practical application of modified separators in high‐energy rechargeable batteries are provided.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202306206</doi><orcidid>https://orcid.org/0000-0003-4295-8578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-01, Vol.34 (2) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2912166598 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Anodes Batteries Cathodes Chemisorption Electrocatalysts Electrode materials Energy storage Iodine Reaction mechanisms Rechargeable batteries Room temperature Selenium Separators Sodium Storage systems Sulfur |
title | Review of Separator Modification Strategies: Targeting Undesired Anion Transport in Room Temperature Sodium–Sulfur/Selenium/Iodine Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20Separator%20Modification%20Strategies:%20Targeting%20Undesired%20Anion%20Transport%20in%20Room%20Temperature%20Sodium%E2%80%93Sulfur/Selenium/Iodine%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Xu,%20Jing&rft.date=2024-01-09&rft.volume=34&rft.issue=2&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202306206&rft_dat=%3Cproquest_cross%3E2912166598%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912166598&rft_id=info:pmid/&rfr_iscdi=true |