Three‐Step Regenerative Strategy: Multifunctional Bilayer Hydrogel for Combined Photothermal/Photodynamic Therapy to Promote Drug‐Resistant Bacteria‐Infected Wound Healing

The drug‐resistant bacterial‐infected skin wound is still a severe healthcare problem. Uncontrolled bacterial infection, abundant reactive oxygen species (ROS) content, and prolonged inflammatory response are detrimental to wound healing. Moreover, excessive vessel growth can result in unsatisfactor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-01, Vol.34 (2)
Hauptverfasser: Zha, Kangkang, Zhang, Wenqian, Hu, Weixian, Tan, Meijun, Zhang, Shengming, Yu, Yongsheng, Gou, Shuangquan, Bu, Pengzhen, Zhou, Bikun, Zou, Yanan, Xiong, Yuan, Mi, Bobin, Liu, Guohui, Feng, Qian, Cai, Kaiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Advanced functional materials
container_volume 34
creator Zha, Kangkang
Zhang, Wenqian
Hu, Weixian
Tan, Meijun
Zhang, Shengming
Yu, Yongsheng
Gou, Shuangquan
Bu, Pengzhen
Zhou, Bikun
Zou, Yanan
Xiong, Yuan
Mi, Bobin
Liu, Guohui
Feng, Qian
Cai, Kaiyong
description The drug‐resistant bacterial‐infected skin wound is still a severe healthcare problem. Uncontrolled bacterial infection, abundant reactive oxygen species (ROS) content, and prolonged inflammatory response are detrimental to wound healing. Moreover, excessive vessel growth can result in unsatisfactory scar formation. Herein, a three‐step regenerative strategy based on a bilayered gelatin/acryloyl β ‐cyclodextrin (BGACD) hydrogel containing physical host–guest complexations and chemical crosslinks is proposed. The hydrogel is loaded with humic acids (HAs) and astragaloside IV (AS) in the lower layer and verteporfin (Vt) in the upper layer. Different gelatin/acryloyl β ‐cyclodextrin ratios endow the lower and upper layers of the hydrogel with different degradation rates. Under light irradiation, the combination of HAs‐induced photothermal therapy (PTT) and verteporfin‐induced photodynamic therapy effectively inhibits MRSA growth. The HAs and astragaloside IV are released from the lower layer to scavenge ROS and promote M2 macrophage polarization and angiogenesis during the inflammation and early proliferation phases, while verteporfin releases from the upper layer suppress excessive vessel growth during the late proliferation and remodeling phases. The HAs‐AS@Vt@BGACD hydrogel successfully achieves rapid and scarless wound healing in an MRSA‐infected wound model in rats. Therefore, the HAs‐AS@Vt@BGACD hydrogel shows promising potential for the treatment of drug‐resistant bacteria‐infected skin wound healing.
doi_str_mv 10.1002/adfm.202308145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912166552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912166552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-89eaee829e7323f6ceaa4cddc244288b43d4d626d2d730577b522fe0093f118d3</originalsourceid><addsrcrecordid>eNo9kc1OAjEUhSdGExHdum7iGujP_OFO8AcSjAQwupuU6e1QMtNi2zGZnY_gq_hKPomDGFf3nJOTe3PzBcElwX2CMR1wIas-xZThlITRUdAhMYl7DNP0-F-T19PgzLktxiRJWNgJvlYbC_D98bn0sEMLKECD5V69A1r6VkDRXKPHuvRK1jr3ymheopEqeQMWTRphTQElksaisanWSoNA843xxm_AVrwc_BrRaF6pHK3akO8a5A2aW1MZD-jW1kV7fQFOOc-1RyOee7CKt-FUS2iNQC-m1gJNgJdKF-fBieSlg4u_2Q2e7-9W40lv9vQwHd_MejnDie-lQ-AAKR1CwiiTcQ6ch7kQOQ1DmqbrkIlQxDQWVCQMR0myjiiVgPGQSUJSwbrB1WHvzpq3GpzPtqa27fsuo0NCSRxHEW1b_UMrt8Y5CzLbWVVx22QEZ3ss2R5L9o-F_QASLogR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912166552</pqid></control><display><type>article</type><title>Three‐Step Regenerative Strategy: Multifunctional Bilayer Hydrogel for Combined Photothermal/Photodynamic Therapy to Promote Drug‐Resistant Bacteria‐Infected Wound Healing</title><source>Access via Wiley Online Library</source><creator>Zha, Kangkang ; Zhang, Wenqian ; Hu, Weixian ; Tan, Meijun ; Zhang, Shengming ; Yu, Yongsheng ; Gou, Shuangquan ; Bu, Pengzhen ; Zhou, Bikun ; Zou, Yanan ; Xiong, Yuan ; Mi, Bobin ; Liu, Guohui ; Feng, Qian ; Cai, Kaiyong</creator><creatorcontrib>Zha, Kangkang ; Zhang, Wenqian ; Hu, Weixian ; Tan, Meijun ; Zhang, Shengming ; Yu, Yongsheng ; Gou, Shuangquan ; Bu, Pengzhen ; Zhou, Bikun ; Zou, Yanan ; Xiong, Yuan ; Mi, Bobin ; Liu, Guohui ; Feng, Qian ; Cai, Kaiyong</creatorcontrib><description>The drug‐resistant bacterial‐infected skin wound is still a severe healthcare problem. Uncontrolled bacterial infection, abundant reactive oxygen species (ROS) content, and prolonged inflammatory response are detrimental to wound healing. Moreover, excessive vessel growth can result in unsatisfactory scar formation. Herein, a three‐step regenerative strategy based on a bilayered gelatin/acryloyl β ‐cyclodextrin (BGACD) hydrogel containing physical host–guest complexations and chemical crosslinks is proposed. The hydrogel is loaded with humic acids (HAs) and astragaloside IV (AS) in the lower layer and verteporfin (Vt) in the upper layer. Different gelatin/acryloyl β ‐cyclodextrin ratios endow the lower and upper layers of the hydrogel with different degradation rates. Under light irradiation, the combination of HAs‐induced photothermal therapy (PTT) and verteporfin‐induced photodynamic therapy effectively inhibits MRSA growth. The HAs and astragaloside IV are released from the lower layer to scavenge ROS and promote M2 macrophage polarization and angiogenesis during the inflammation and early proliferation phases, while verteporfin releases from the upper layer suppress excessive vessel growth during the late proliferation and remodeling phases. The HAs‐AS@Vt@BGACD hydrogel successfully achieves rapid and scarless wound healing in an MRSA‐infected wound model in rats. Therefore, the HAs‐AS@Vt@BGACD hydrogel shows promising potential for the treatment of drug‐resistant bacteria‐infected skin wound healing.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308145</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; Cyclodextrins ; Gelatin ; Humic acids ; Hydrogels ; Inflammatory response ; Light irradiation ; Photodegradation ; Photodynamic therapy ; Skin resistance ; Wound healing</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (2)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-89eaee829e7323f6ceaa4cddc244288b43d4d626d2d730577b522fe0093f118d3</citedby><cites>FETCH-LOGICAL-c307t-89eaee829e7323f6ceaa4cddc244288b43d4d626d2d730577b522fe0093f118d3</cites><orcidid>0000-0001-9029-680X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zha, Kangkang</creatorcontrib><creatorcontrib>Zhang, Wenqian</creatorcontrib><creatorcontrib>Hu, Weixian</creatorcontrib><creatorcontrib>Tan, Meijun</creatorcontrib><creatorcontrib>Zhang, Shengming</creatorcontrib><creatorcontrib>Yu, Yongsheng</creatorcontrib><creatorcontrib>Gou, Shuangquan</creatorcontrib><creatorcontrib>Bu, Pengzhen</creatorcontrib><creatorcontrib>Zhou, Bikun</creatorcontrib><creatorcontrib>Zou, Yanan</creatorcontrib><creatorcontrib>Xiong, Yuan</creatorcontrib><creatorcontrib>Mi, Bobin</creatorcontrib><creatorcontrib>Liu, Guohui</creatorcontrib><creatorcontrib>Feng, Qian</creatorcontrib><creatorcontrib>Cai, Kaiyong</creatorcontrib><title>Three‐Step Regenerative Strategy: Multifunctional Bilayer Hydrogel for Combined Photothermal/Photodynamic Therapy to Promote Drug‐Resistant Bacteria‐Infected Wound Healing</title><title>Advanced functional materials</title><description>The drug‐resistant bacterial‐infected skin wound is still a severe healthcare problem. Uncontrolled bacterial infection, abundant reactive oxygen species (ROS) content, and prolonged inflammatory response are detrimental to wound healing. Moreover, excessive vessel growth can result in unsatisfactory scar formation. Herein, a three‐step regenerative strategy based on a bilayered gelatin/acryloyl β ‐cyclodextrin (BGACD) hydrogel containing physical host–guest complexations and chemical crosslinks is proposed. The hydrogel is loaded with humic acids (HAs) and astragaloside IV (AS) in the lower layer and verteporfin (Vt) in the upper layer. Different gelatin/acryloyl β ‐cyclodextrin ratios endow the lower and upper layers of the hydrogel with different degradation rates. Under light irradiation, the combination of HAs‐induced photothermal therapy (PTT) and verteporfin‐induced photodynamic therapy effectively inhibits MRSA growth. The HAs and astragaloside IV are released from the lower layer to scavenge ROS and promote M2 macrophage polarization and angiogenesis during the inflammation and early proliferation phases, while verteporfin releases from the upper layer suppress excessive vessel growth during the late proliferation and remodeling phases. The HAs‐AS@Vt@BGACD hydrogel successfully achieves rapid and scarless wound healing in an MRSA‐infected wound model in rats. Therefore, the HAs‐AS@Vt@BGACD hydrogel shows promising potential for the treatment of drug‐resistant bacteria‐infected skin wound healing.</description><subject>Bacteria</subject><subject>Cyclodextrins</subject><subject>Gelatin</subject><subject>Humic acids</subject><subject>Hydrogels</subject><subject>Inflammatory response</subject><subject>Light irradiation</subject><subject>Photodegradation</subject><subject>Photodynamic therapy</subject><subject>Skin resistance</subject><subject>Wound healing</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kc1OAjEUhSdGExHdum7iGujP_OFO8AcSjAQwupuU6e1QMtNi2zGZnY_gq_hKPomDGFf3nJOTe3PzBcElwX2CMR1wIas-xZThlITRUdAhMYl7DNP0-F-T19PgzLktxiRJWNgJvlYbC_D98bn0sEMLKECD5V69A1r6VkDRXKPHuvRK1jr3ymheopEqeQMWTRphTQElksaisanWSoNA843xxm_AVrwc_BrRaF6pHK3akO8a5A2aW1MZD-jW1kV7fQFOOc-1RyOee7CKt-FUS2iNQC-m1gJNgJdKF-fBieSlg4u_2Q2e7-9W40lv9vQwHd_MejnDie-lQ-AAKR1CwiiTcQ6ch7kQOQ1DmqbrkIlQxDQWVCQMR0myjiiVgPGQSUJSwbrB1WHvzpq3GpzPtqa27fsuo0NCSRxHEW1b_UMrt8Y5CzLbWVVx22QEZ3ss2R5L9o-F_QASLogR</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Zha, Kangkang</creator><creator>Zhang, Wenqian</creator><creator>Hu, Weixian</creator><creator>Tan, Meijun</creator><creator>Zhang, Shengming</creator><creator>Yu, Yongsheng</creator><creator>Gou, Shuangquan</creator><creator>Bu, Pengzhen</creator><creator>Zhou, Bikun</creator><creator>Zou, Yanan</creator><creator>Xiong, Yuan</creator><creator>Mi, Bobin</creator><creator>Liu, Guohui</creator><creator>Feng, Qian</creator><creator>Cai, Kaiyong</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9029-680X</orcidid></search><sort><creationdate>20240109</creationdate><title>Three‐Step Regenerative Strategy: Multifunctional Bilayer Hydrogel for Combined Photothermal/Photodynamic Therapy to Promote Drug‐Resistant Bacteria‐Infected Wound Healing</title><author>Zha, Kangkang ; Zhang, Wenqian ; Hu, Weixian ; Tan, Meijun ; Zhang, Shengming ; Yu, Yongsheng ; Gou, Shuangquan ; Bu, Pengzhen ; Zhou, Bikun ; Zou, Yanan ; Xiong, Yuan ; Mi, Bobin ; Liu, Guohui ; Feng, Qian ; Cai, Kaiyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-89eaee829e7323f6ceaa4cddc244288b43d4d626d2d730577b522fe0093f118d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria</topic><topic>Cyclodextrins</topic><topic>Gelatin</topic><topic>Humic acids</topic><topic>Hydrogels</topic><topic>Inflammatory response</topic><topic>Light irradiation</topic><topic>Photodegradation</topic><topic>Photodynamic therapy</topic><topic>Skin resistance</topic><topic>Wound healing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zha, Kangkang</creatorcontrib><creatorcontrib>Zhang, Wenqian</creatorcontrib><creatorcontrib>Hu, Weixian</creatorcontrib><creatorcontrib>Tan, Meijun</creatorcontrib><creatorcontrib>Zhang, Shengming</creatorcontrib><creatorcontrib>Yu, Yongsheng</creatorcontrib><creatorcontrib>Gou, Shuangquan</creatorcontrib><creatorcontrib>Bu, Pengzhen</creatorcontrib><creatorcontrib>Zhou, Bikun</creatorcontrib><creatorcontrib>Zou, Yanan</creatorcontrib><creatorcontrib>Xiong, Yuan</creatorcontrib><creatorcontrib>Mi, Bobin</creatorcontrib><creatorcontrib>Liu, Guohui</creatorcontrib><creatorcontrib>Feng, Qian</creatorcontrib><creatorcontrib>Cai, Kaiyong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zha, Kangkang</au><au>Zhang, Wenqian</au><au>Hu, Weixian</au><au>Tan, Meijun</au><au>Zhang, Shengming</au><au>Yu, Yongsheng</au><au>Gou, Shuangquan</au><au>Bu, Pengzhen</au><au>Zhou, Bikun</au><au>Zou, Yanan</au><au>Xiong, Yuan</au><au>Mi, Bobin</au><au>Liu, Guohui</au><au>Feng, Qian</au><au>Cai, Kaiyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three‐Step Regenerative Strategy: Multifunctional Bilayer Hydrogel for Combined Photothermal/Photodynamic Therapy to Promote Drug‐Resistant Bacteria‐Infected Wound Healing</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-09</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The drug‐resistant bacterial‐infected skin wound is still a severe healthcare problem. Uncontrolled bacterial infection, abundant reactive oxygen species (ROS) content, and prolonged inflammatory response are detrimental to wound healing. Moreover, excessive vessel growth can result in unsatisfactory scar formation. Herein, a three‐step regenerative strategy based on a bilayered gelatin/acryloyl β ‐cyclodextrin (BGACD) hydrogel containing physical host–guest complexations and chemical crosslinks is proposed. The hydrogel is loaded with humic acids (HAs) and astragaloside IV (AS) in the lower layer and verteporfin (Vt) in the upper layer. Different gelatin/acryloyl β ‐cyclodextrin ratios endow the lower and upper layers of the hydrogel with different degradation rates. Under light irradiation, the combination of HAs‐induced photothermal therapy (PTT) and verteporfin‐induced photodynamic therapy effectively inhibits MRSA growth. The HAs and astragaloside IV are released from the lower layer to scavenge ROS and promote M2 macrophage polarization and angiogenesis during the inflammation and early proliferation phases, while verteporfin releases from the upper layer suppress excessive vessel growth during the late proliferation and remodeling phases. The HAs‐AS@Vt@BGACD hydrogel successfully achieves rapid and scarless wound healing in an MRSA‐infected wound model in rats. Therefore, the HAs‐AS@Vt@BGACD hydrogel shows promising potential for the treatment of drug‐resistant bacteria‐infected skin wound healing.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202308145</doi><orcidid>https://orcid.org/0000-0001-9029-680X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-01, Vol.34 (2)
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2912166552
source Access via Wiley Online Library
subjects Bacteria
Cyclodextrins
Gelatin
Humic acids
Hydrogels
Inflammatory response
Light irradiation
Photodegradation
Photodynamic therapy
Skin resistance
Wound healing
title Three‐Step Regenerative Strategy: Multifunctional Bilayer Hydrogel for Combined Photothermal/Photodynamic Therapy to Promote Drug‐Resistant Bacteria‐Infected Wound Healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T14%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three%E2%80%90Step%20Regenerative%20Strategy:%20Multifunctional%20Bilayer%20Hydrogel%20for%20Combined%20Photothermal/Photodynamic%20Therapy%20to%20Promote%20Drug%E2%80%90Resistant%20Bacteria%E2%80%90Infected%20Wound%20Healing&rft.jtitle=Advanced%20functional%20materials&rft.au=Zha,%20Kangkang&rft.date=2024-01-09&rft.volume=34&rft.issue=2&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308145&rft_dat=%3Cproquest_cross%3E2912166552%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912166552&rft_id=info:pmid/&rfr_iscdi=true