Enhancement of Thermoelectric Performance in Robust ZnO‐Based Composite Ceramics Driven by A Stepwise Optimization Strategy
ZnO is a promising high‐temperature thermoelectric (TE) material due to its superior stability and earth abundance. However, the coupling relation between Seebeck coefficient and electrical conductivity on carrier concentration limits the optimum TE performance for most TE materials, especially ZnO....
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-01, Vol.34 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Wang, Dianzhen Gao, Yuqi You, Cun Cheng, Jiaen Liu, Zeben Qiang, Yuhan Lian, Min Ma, Xiaoci Ge, Yufei Chen, Yanli Tao, Qiang Zhu, Pinwen |
description | ZnO is a promising high‐temperature thermoelectric (TE) material due to its superior stability and earth abundance. However, the coupling relation between Seebeck coefficient and electrical conductivity on carrier concentration limits the optimum TE performance for most TE materials, especially ZnO. Herein, enhancement of TE performance is achieved via a stepwise optimization strategy composed of carrier concentration optimization and carrier filtering effect for fabricating robust ZnO‐based composite ceramics through a self‐developed specific high‐pressure synthesis followed by spark plasma sintering. Specifically, doping SnO
2
provide substantial electrons to surge the carrier concentration. The subsequent compositing Si
3
N
4
nanoparticles results in the unique reaction‐generated Zn
2
SiO
4
nanoprecipitates with a larger bandgap and intrinsically low thermal conductivity, which introduce an excellent carrier filtering effect to increase the Seebeck coefficient by 57.7% at 300 K without compromising electrical conductivity much and enhance phonon scattering to cause an ultralow lattice thermal conductivity of 1.39 W m
−1
K
−1
achieving amorphous limits of ZnO (1.4±0.1 W m
−1
K
−1
). Consequently, a high peak
ZT
(figure of merit) of 0.691 at 873 K is obtained, which is higher than that of previously reported ZnO‐based TE materials. This work demonstrates a feasible and effective strategy to fabricate high‐performance TE materials, especially those with inferior electrical conductivity. |
doi_str_mv | 10.1002/adfm.202308970 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2912166539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2912166539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-aa7762b86ac97b7abdf12bcdcb7e065330973beb6996126148171986d0a290343</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhQdRsFa3rgOup-anJpNlHesPFCpaQdwMSeaOTelMxiRVKgg-gs_okzil0tU9XD7OgS9JTgkeEIzpuSqrekAxZTiTAu8lPcIJTxmm2f4uk-fD5CiEBcZECDbsJV_jZq4aAzU0EbkKzebgawdLMNFbg-7BV87XGwLZBj04vQoRvTTT3--fSxWgRLmrWxdsBJSDV7U1AV15-w4N0ms0Qo8R2g8bAE3baGv7qaJ1Tff1KsLr-jg5qNQywMn_7SdP1-NZfptOpjd3-WiSGoZFTJUSglOdcWWk0ELpsiJUm9JoAZhfMIalYBo0l5ITyskwI4LIjJdYUYnZkPWTs21v693bCkIsFm7lm26yoJJQwrsS2VGDLWW8C8FDVbTe1sqvC4KLjeJio7jYKWZ_PqhxWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912166539</pqid></control><display><type>article</type><title>Enhancement of Thermoelectric Performance in Robust ZnO‐Based Composite Ceramics Driven by A Stepwise Optimization Strategy</title><source>Wiley Online Library</source><creator>Wang, Dianzhen ; Gao, Yuqi ; You, Cun ; Cheng, Jiaen ; Liu, Zeben ; Qiang, Yuhan ; Lian, Min ; Ma, Xiaoci ; Ge, Yufei ; Chen, Yanli ; Tao, Qiang ; Zhu, Pinwen</creator><creatorcontrib>Wang, Dianzhen ; Gao, Yuqi ; You, Cun ; Cheng, Jiaen ; Liu, Zeben ; Qiang, Yuhan ; Lian, Min ; Ma, Xiaoci ; Ge, Yufei ; Chen, Yanli ; Tao, Qiang ; Zhu, Pinwen</creatorcontrib><description>ZnO is a promising high‐temperature thermoelectric (TE) material due to its superior stability and earth abundance. However, the coupling relation between Seebeck coefficient and electrical conductivity on carrier concentration limits the optimum TE performance for most TE materials, especially ZnO. Herein, enhancement of TE performance is achieved via a stepwise optimization strategy composed of carrier concentration optimization and carrier filtering effect for fabricating robust ZnO‐based composite ceramics through a self‐developed specific high‐pressure synthesis followed by spark plasma sintering. Specifically, doping SnO
2
provide substantial electrons to surge the carrier concentration. The subsequent compositing Si
3
N
4
nanoparticles results in the unique reaction‐generated Zn
2
SiO
4
nanoprecipitates with a larger bandgap and intrinsically low thermal conductivity, which introduce an excellent carrier filtering effect to increase the Seebeck coefficient by 57.7% at 300 K without compromising electrical conductivity much and enhance phonon scattering to cause an ultralow lattice thermal conductivity of 1.39 W m
−1
K
−1
achieving amorphous limits of ZnO (1.4±0.1 W m
−1
K
−1
). Consequently, a high peak
ZT
(figure of merit) of 0.691 at 873 K is obtained, which is higher than that of previously reported ZnO‐based TE materials. This work demonstrates a feasible and effective strategy to fabricate high‐performance TE materials, especially those with inferior electrical conductivity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308970</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carrier density ; Ceramics ; Electrical resistivity ; Figure of merit ; Filtration ; Heat conductivity ; Heat transfer ; Optimization ; Plasma sintering ; Robustness ; Seebeck effect ; Spark plasma sintering ; Thermal conductivity ; Thermoelectric materials ; Thermoelectricity ; Tin dioxide ; Zinc oxide ; Zinc silicates</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (2)</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-aa7762b86ac97b7abdf12bcdcb7e065330973beb6996126148171986d0a290343</citedby><cites>FETCH-LOGICAL-c307t-aa7762b86ac97b7abdf12bcdcb7e065330973beb6996126148171986d0a290343</cites><orcidid>0000-0002-6357-5552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Dianzhen</creatorcontrib><creatorcontrib>Gao, Yuqi</creatorcontrib><creatorcontrib>You, Cun</creatorcontrib><creatorcontrib>Cheng, Jiaen</creatorcontrib><creatorcontrib>Liu, Zeben</creatorcontrib><creatorcontrib>Qiang, Yuhan</creatorcontrib><creatorcontrib>Lian, Min</creatorcontrib><creatorcontrib>Ma, Xiaoci</creatorcontrib><creatorcontrib>Ge, Yufei</creatorcontrib><creatorcontrib>Chen, Yanli</creatorcontrib><creatorcontrib>Tao, Qiang</creatorcontrib><creatorcontrib>Zhu, Pinwen</creatorcontrib><title>Enhancement of Thermoelectric Performance in Robust ZnO‐Based Composite Ceramics Driven by A Stepwise Optimization Strategy</title><title>Advanced functional materials</title><description>ZnO is a promising high‐temperature thermoelectric (TE) material due to its superior stability and earth abundance. However, the coupling relation between Seebeck coefficient and electrical conductivity on carrier concentration limits the optimum TE performance for most TE materials, especially ZnO. Herein, enhancement of TE performance is achieved via a stepwise optimization strategy composed of carrier concentration optimization and carrier filtering effect for fabricating robust ZnO‐based composite ceramics through a self‐developed specific high‐pressure synthesis followed by spark plasma sintering. Specifically, doping SnO
2
provide substantial electrons to surge the carrier concentration. The subsequent compositing Si
3
N
4
nanoparticles results in the unique reaction‐generated Zn
2
SiO
4
nanoprecipitates with a larger bandgap and intrinsically low thermal conductivity, which introduce an excellent carrier filtering effect to increase the Seebeck coefficient by 57.7% at 300 K without compromising electrical conductivity much and enhance phonon scattering to cause an ultralow lattice thermal conductivity of 1.39 W m
−1
K
−1
achieving amorphous limits of ZnO (1.4±0.1 W m
−1
K
−1
). Consequently, a high peak
ZT
(figure of merit) of 0.691 at 873 K is obtained, which is higher than that of previously reported ZnO‐based TE materials. This work demonstrates a feasible and effective strategy to fabricate high‐performance TE materials, especially those with inferior electrical conductivity.</description><subject>Carrier density</subject><subject>Ceramics</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>Filtration</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Optimization</subject><subject>Plasma sintering</subject><subject>Robustness</subject><subject>Seebeck effect</subject><subject>Spark plasma sintering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Tin dioxide</subject><subject>Zinc oxide</subject><subject>Zinc silicates</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhQdRsFa3rgOup-anJpNlHesPFCpaQdwMSeaOTelMxiRVKgg-gs_okzil0tU9XD7OgS9JTgkeEIzpuSqrekAxZTiTAu8lPcIJTxmm2f4uk-fD5CiEBcZECDbsJV_jZq4aAzU0EbkKzebgawdLMNFbg-7BV87XGwLZBj04vQoRvTTT3--fSxWgRLmrWxdsBJSDV7U1AV15-w4N0ms0Qo8R2g8bAE3baGv7qaJ1Tff1KsLr-jg5qNQywMn_7SdP1-NZfptOpjd3-WiSGoZFTJUSglOdcWWk0ELpsiJUm9JoAZhfMIalYBo0l5ITyskwI4LIjJdYUYnZkPWTs21v693bCkIsFm7lm26yoJJQwrsS2VGDLWW8C8FDVbTe1sqvC4KLjeJio7jYKWZ_PqhxWg</recordid><startdate>20240109</startdate><enddate>20240109</enddate><creator>Wang, Dianzhen</creator><creator>Gao, Yuqi</creator><creator>You, Cun</creator><creator>Cheng, Jiaen</creator><creator>Liu, Zeben</creator><creator>Qiang, Yuhan</creator><creator>Lian, Min</creator><creator>Ma, Xiaoci</creator><creator>Ge, Yufei</creator><creator>Chen, Yanli</creator><creator>Tao, Qiang</creator><creator>Zhu, Pinwen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6357-5552</orcidid></search><sort><creationdate>20240109</creationdate><title>Enhancement of Thermoelectric Performance in Robust ZnO‐Based Composite Ceramics Driven by A Stepwise Optimization Strategy</title><author>Wang, Dianzhen ; Gao, Yuqi ; You, Cun ; Cheng, Jiaen ; Liu, Zeben ; Qiang, Yuhan ; Lian, Min ; Ma, Xiaoci ; Ge, Yufei ; Chen, Yanli ; Tao, Qiang ; Zhu, Pinwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-aa7762b86ac97b7abdf12bcdcb7e065330973beb6996126148171986d0a290343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carrier density</topic><topic>Ceramics</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>Filtration</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Optimization</topic><topic>Plasma sintering</topic><topic>Robustness</topic><topic>Seebeck effect</topic><topic>Spark plasma sintering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Tin dioxide</topic><topic>Zinc oxide</topic><topic>Zinc silicates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Dianzhen</creatorcontrib><creatorcontrib>Gao, Yuqi</creatorcontrib><creatorcontrib>You, Cun</creatorcontrib><creatorcontrib>Cheng, Jiaen</creatorcontrib><creatorcontrib>Liu, Zeben</creatorcontrib><creatorcontrib>Qiang, Yuhan</creatorcontrib><creatorcontrib>Lian, Min</creatorcontrib><creatorcontrib>Ma, Xiaoci</creatorcontrib><creatorcontrib>Ge, Yufei</creatorcontrib><creatorcontrib>Chen, Yanli</creatorcontrib><creatorcontrib>Tao, Qiang</creatorcontrib><creatorcontrib>Zhu, Pinwen</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Dianzhen</au><au>Gao, Yuqi</au><au>You, Cun</au><au>Cheng, Jiaen</au><au>Liu, Zeben</au><au>Qiang, Yuhan</au><au>Lian, Min</au><au>Ma, Xiaoci</au><au>Ge, Yufei</au><au>Chen, Yanli</au><au>Tao, Qiang</au><au>Zhu, Pinwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of Thermoelectric Performance in Robust ZnO‐Based Composite Ceramics Driven by A Stepwise Optimization Strategy</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-09</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>ZnO is a promising high‐temperature thermoelectric (TE) material due to its superior stability and earth abundance. However, the coupling relation between Seebeck coefficient and electrical conductivity on carrier concentration limits the optimum TE performance for most TE materials, especially ZnO. Herein, enhancement of TE performance is achieved via a stepwise optimization strategy composed of carrier concentration optimization and carrier filtering effect for fabricating robust ZnO‐based composite ceramics through a self‐developed specific high‐pressure synthesis followed by spark plasma sintering. Specifically, doping SnO
2
provide substantial electrons to surge the carrier concentration. The subsequent compositing Si
3
N
4
nanoparticles results in the unique reaction‐generated Zn
2
SiO
4
nanoprecipitates with a larger bandgap and intrinsically low thermal conductivity, which introduce an excellent carrier filtering effect to increase the Seebeck coefficient by 57.7% at 300 K without compromising electrical conductivity much and enhance phonon scattering to cause an ultralow lattice thermal conductivity of 1.39 W m
−1
K
−1
achieving amorphous limits of ZnO (1.4±0.1 W m
−1
K
−1
). Consequently, a high peak
ZT
(figure of merit) of 0.691 at 873 K is obtained, which is higher than that of previously reported ZnO‐based TE materials. This work demonstrates a feasible and effective strategy to fabricate high‐performance TE materials, especially those with inferior electrical conductivity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202308970</doi><orcidid>https://orcid.org/0000-0002-6357-5552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-01, Vol.34 (2) |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2912166539 |
source | Wiley Online Library |
subjects | Carrier density Ceramics Electrical resistivity Figure of merit Filtration Heat conductivity Heat transfer Optimization Plasma sintering Robustness Seebeck effect Spark plasma sintering Thermal conductivity Thermoelectric materials Thermoelectricity Tin dioxide Zinc oxide Zinc silicates |
title | Enhancement of Thermoelectric Performance in Robust ZnO‐Based Composite Ceramics Driven by A Stepwise Optimization Strategy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A16%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20Thermoelectric%20Performance%20in%20Robust%20ZnO%E2%80%90Based%20Composite%20Ceramics%20Driven%20by%20A%20Stepwise%20Optimization%20Strategy&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Dianzhen&rft.date=2024-01-09&rft.volume=34&rft.issue=2&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308970&rft_dat=%3Cproquest_cross%3E2912166539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912166539&rft_id=info:pmid/&rfr_iscdi=true |