Gaussian Copula–based Regression Models for the Analysis of Mixed Outcomes: An Application on Household’s Utilization of Health Services Data

In analyzing most correlated outcomes, the popular multivariate Gaussian distribution is very restrictive and therefore dependence modeling using copulas is nowadays very common to take into account the association among mixed outcomes. In this paper, we use Gaussian copula to construct a joint dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Statistical Theory and Applications 2019-09, Vol.18 (3), p.182-197
Hauptverfasser: Ghahroodi, Z. Rezaei, Saba, R. Aliakbari, Baghfalaki, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 3
container_start_page 182
container_title Journal of Statistical Theory and Applications
container_volume 18
creator Ghahroodi, Z. Rezaei
Saba, R. Aliakbari
Baghfalaki, T.
description In analyzing most correlated outcomes, the popular multivariate Gaussian distribution is very restrictive and therefore dependence modeling using copulas is nowadays very common to take into account the association among mixed outcomes. In this paper, we use Gaussian copula to construct a joint distribution for three mixed discrete and continuous responses. Our approach entails specifying marginal regression models for the outcomes, and combining them via a copula to form a joint model. Closed form for likelihood function is obtained by considering sampling weights. We also obtain the likelihood function for mixed responses where one of the responses, time to event outcome, may have censored values. Some simulation studies are performed to illustrate the performance of the model. Finally, the model is applied on data involving trivariate mixed outcomes on hospitalization of individuals, based on the survey of household’s utilization of health services.
doi_str_mv 10.2991/jsta.d.190306.009
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2912143705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7eb789875e5e47fe831fedeec9634750</doaj_id><sourcerecordid>2912143705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-dadc008e837e4576463abd3f48e81f4f079391c1cd12538b25c79c415e2a895f3</originalsourceid><addsrcrecordid>eNp1Ud1qFDEUDqLgUvsA3gW8njWZmUwm3i2rdgsthWqvQyY52c2SbsYkI61XfQXxytfrk5jtFL0SAoHv73DOh9BbSpa1EPT9PmW1NEsqSEO6JSHiBVrUNW0ryrvuJVpQ1vQV73v-Gp2m5AbSdg0ngosF-nmmpgKpA16HcfLq8eHXoBIYfA3bCIUJB3wZDPiEbYg47wCvDsrfJ5dwsPjS3RXt1ZR1uIX0oXB4NY7eaZWPzvI2YUqwC948PvxO-CY77348kxZvQPm8w18gfncaEv6osnqDXlnlE5w-_yfo5vOnr-tNdXF1dr5eXVS64TxXRhlNSA99w6FlvCsrqcE0ti0Qta0lXDSCaqoNrcv6Q800F7qlDGrVC2abE3Q-55qg9nKM7lbFexmUk09AiFupYnbag-Qw8F70nAGDltsyk1owAFp0TcsZKVnv5qwxhm8TpCz3YYrlTknWgpYmyrlZUdFZpWNIKYL9O5USeSxSHouURs5FylJk8dSzJxXtYQvxX_L_TX8AZACl0Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912143705</pqid></control><display><type>article</type><title>Gaussian Copula–based Regression Models for the Analysis of Mixed Outcomes: An Application on Household’s Utilization of Health Services Data</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ghahroodi, Z. Rezaei ; Saba, R. Aliakbari ; Baghfalaki, T.</creator><creatorcontrib>Ghahroodi, Z. Rezaei ; Saba, R. Aliakbari ; Baghfalaki, T.</creatorcontrib><description>In analyzing most correlated outcomes, the popular multivariate Gaussian distribution is very restrictive and therefore dependence modeling using copulas is nowadays very common to take into account the association among mixed outcomes. In this paper, we use Gaussian copula to construct a joint distribution for three mixed discrete and continuous responses. Our approach entails specifying marginal regression models for the outcomes, and combining them via a copula to form a joint model. Closed form for likelihood function is obtained by considering sampling weights. We also obtain the likelihood function for mixed responses where one of the responses, time to event outcome, may have censored values. Some simulation studies are performed to illustrate the performance of the model. Finally, the model is applied on data involving trivariate mixed outcomes on hospitalization of individuals, based on the survey of household’s utilization of health services.</description><identifier>ISSN: 1538-7887</identifier><identifier>ISSN: 2214-1766</identifier><identifier>EISSN: 2214-1766</identifier><identifier>DOI: 10.2991/jsta.d.190306.009</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Copula models ; Health services ; marginal model ; mixed outcomes ; Normal distribution ; Regression models ; Research Article ; sampling weights ; Statistical analysis</subject><ispartof>Journal of Statistical Theory and Applications, 2019-09, Vol.18 (3), p.182-197</ispartof><rights>The Authors. Published by Atlantis Press SARL 2019</rights><rights>The Authors. Published by Atlantis Press SARL 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.2991/jsta.d.190306.009$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.2991/jsta.d.190306.009$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ghahroodi, Z. Rezaei</creatorcontrib><creatorcontrib>Saba, R. Aliakbari</creatorcontrib><creatorcontrib>Baghfalaki, T.</creatorcontrib><title>Gaussian Copula–based Regression Models for the Analysis of Mixed Outcomes: An Application on Household’s Utilization of Health Services Data</title><title>Journal of Statistical Theory and Applications</title><addtitle>J Stat Theory Appl</addtitle><description>In analyzing most correlated outcomes, the popular multivariate Gaussian distribution is very restrictive and therefore dependence modeling using copulas is nowadays very common to take into account the association among mixed outcomes. In this paper, we use Gaussian copula to construct a joint distribution for three mixed discrete and continuous responses. Our approach entails specifying marginal regression models for the outcomes, and combining them via a copula to form a joint model. Closed form for likelihood function is obtained by considering sampling weights. We also obtain the likelihood function for mixed responses where one of the responses, time to event outcome, may have censored values. Some simulation studies are performed to illustrate the performance of the model. Finally, the model is applied on data involving trivariate mixed outcomes on hospitalization of individuals, based on the survey of household’s utilization of health services.</description><subject>Copula models</subject><subject>Health services</subject><subject>marginal model</subject><subject>mixed outcomes</subject><subject>Normal distribution</subject><subject>Regression models</subject><subject>Research Article</subject><subject>sampling weights</subject><subject>Statistical analysis</subject><issn>1538-7887</issn><issn>2214-1766</issn><issn>2214-1766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Ud1qFDEUDqLgUvsA3gW8njWZmUwm3i2rdgsthWqvQyY52c2SbsYkI61XfQXxytfrk5jtFL0SAoHv73DOh9BbSpa1EPT9PmW1NEsqSEO6JSHiBVrUNW0ryrvuJVpQ1vQV73v-Gp2m5AbSdg0ngosF-nmmpgKpA16HcfLq8eHXoBIYfA3bCIUJB3wZDPiEbYg47wCvDsrfJ5dwsPjS3RXt1ZR1uIX0oXB4NY7eaZWPzvI2YUqwC948PvxO-CY77348kxZvQPm8w18gfncaEv6osnqDXlnlE5w-_yfo5vOnr-tNdXF1dr5eXVS64TxXRhlNSA99w6FlvCsrqcE0ti0Qta0lXDSCaqoNrcv6Q800F7qlDGrVC2abE3Q-55qg9nKM7lbFexmUk09AiFupYnbag-Qw8F70nAGDltsyk1owAFp0TcsZKVnv5qwxhm8TpCz3YYrlTknWgpYmyrlZUdFZpWNIKYL9O5USeSxSHouURs5FylJk8dSzJxXtYQvxX_L_TX8AZACl0Q</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Ghahroodi, Z. Rezaei</creator><creator>Saba, R. Aliakbari</creator><creator>Baghfalaki, T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20190901</creationdate><title>Gaussian Copula–based Regression Models for the Analysis of Mixed Outcomes: An Application on Household’s Utilization of Health Services Data</title><author>Ghahroodi, Z. Rezaei ; Saba, R. Aliakbari ; Baghfalaki, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-dadc008e837e4576463abd3f48e81f4f079391c1cd12538b25c79c415e2a895f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Copula models</topic><topic>Health services</topic><topic>marginal model</topic><topic>mixed outcomes</topic><topic>Normal distribution</topic><topic>Regression models</topic><topic>Research Article</topic><topic>sampling weights</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghahroodi, Z. Rezaei</creatorcontrib><creatorcontrib>Saba, R. Aliakbari</creatorcontrib><creatorcontrib>Baghfalaki, T.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Statistical Theory and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghahroodi, Z. Rezaei</au><au>Saba, R. Aliakbari</au><au>Baghfalaki, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gaussian Copula–based Regression Models for the Analysis of Mixed Outcomes: An Application on Household’s Utilization of Health Services Data</atitle><jtitle>Journal of Statistical Theory and Applications</jtitle><stitle>J Stat Theory Appl</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>18</volume><issue>3</issue><spage>182</spage><epage>197</epage><pages>182-197</pages><issn>1538-7887</issn><issn>2214-1766</issn><eissn>2214-1766</eissn><abstract>In analyzing most correlated outcomes, the popular multivariate Gaussian distribution is very restrictive and therefore dependence modeling using copulas is nowadays very common to take into account the association among mixed outcomes. In this paper, we use Gaussian copula to construct a joint distribution for three mixed discrete and continuous responses. Our approach entails specifying marginal regression models for the outcomes, and combining them via a copula to form a joint model. Closed form for likelihood function is obtained by considering sampling weights. We also obtain the likelihood function for mixed responses where one of the responses, time to event outcome, may have censored values. Some simulation studies are performed to illustrate the performance of the model. Finally, the model is applied on data involving trivariate mixed outcomes on hospitalization of individuals, based on the survey of household’s utilization of health services.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.2991/jsta.d.190306.009</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-7887
ispartof Journal of Statistical Theory and Applications, 2019-09, Vol.18 (3), p.182-197
issn 1538-7887
2214-1766
2214-1766
language eng
recordid cdi_proquest_journals_2912143705
source DOAJ Directory of Open Access Journals; SpringerLink Journals - AutoHoldings
subjects Copula models
Health services
marginal model
mixed outcomes
Normal distribution
Regression models
Research Article
sampling weights
Statistical analysis
title Gaussian Copula–based Regression Models for the Analysis of Mixed Outcomes: An Application on Household’s Utilization of Health Services Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gaussian%20Copula%E2%80%93based%20Regression%20Models%20for%20the%20Analysis%20of%20Mixed%20Outcomes:%20An%20Application%20on%20Household%E2%80%99s%20Utilization%20of%20Health%20Services%20Data&rft.jtitle=Journal%20of%20Statistical%20Theory%20and%20Applications&rft.au=Ghahroodi,%20Z.%20Rezaei&rft.date=2019-09-01&rft.volume=18&rft.issue=3&rft.spage=182&rft.epage=197&rft.pages=182-197&rft.issn=1538-7887&rft.eissn=2214-1766&rft_id=info:doi/10.2991/jsta.d.190306.009&rft_dat=%3Cproquest_doaj_%3E2912143705%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912143705&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_7eb789875e5e47fe831fedeec9634750&rfr_iscdi=true