Pharmacoencephalographic Assessment of Antiphyschotic Agents’ Effect Dose-Dependency in Rats

Pharmacoencephalography (pharmaco-EEG) is a prominent instrument for the pharmacological screening of new psychoactive molecules. This experimental approach has not remained a vestige of neurobiological studies, and can be used successfully to complete today’s research objectives. The development an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of evolutionary biochemistry and physiology 2023-11, Vol.59 (6), p.2153-2167
Hauptverfasser: Sysoev, Yu. I., Shits, D. D., Puchik, M. M., Knyazeva, I. S., Korelov, M. S., Prikhodko, V. A., Titovich, I. A., Selizarova, N. O., Okovityi, S. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2167
container_issue 6
container_start_page 2153
container_title Journal of evolutionary biochemistry and physiology
container_volume 59
creator Sysoev, Yu. I.
Shits, D. D.
Puchik, M. M.
Knyazeva, I. S.
Korelov, M. S.
Prikhodko, V. A.
Titovich, I. A.
Selizarova, N. O.
Okovityi, S. V.
description Pharmacoencephalography (pharmaco-EEG) is a prominent instrument for the pharmacological screening of new psychoactive molecules. This experimental approach has not remained a vestige of neurobiological studies, and can be used successfully to complete today’s research objectives. The development and rise to universal use of machine learning techniques opens up novel prospects for the use of pharmaco-EEG data to solve the problems of classification and prognosis. We have previously shown that naïve Bayes classifier (NBC) combined with principal component analysis (PCA) can be used to differentiate between antipsychotic and sedative drug effects as well as to distinguish among the antipsychotics’ effects. In the present study, we evaluated the possibility to employ this method to assess the dose-dependency of antipsychotic effects. The experiments were carried out in white outbred male rats with chronically implanted electrocorticographic electrodes. As the agents of interest, we chose two drugs with antipsychotic activity, chlorpromazine and promethazine, in three doses each (0.1, 1, 10 mg/kg and 0.5, 5 and 20 mg/kg, respectively). The training set, used as a reference to determine the pharmacological effects of the agents of interest, included the D 2 -dopamine receptor blocker haloperidol, M-cholinergic receptor blocker tropicamide, H 1 -histamine receptor blocker chloropyramine, the sedative dexmedetomidine, and the anxiolytic phenazepam. We have shown that the lowest chlorpromazine dose (0.1 mg/kg) can be characterized as antipsychotic with a marked histaminolytic effect, while the highest one (10 mg/kg) exhibits predominantly antipsychotic activity with a cataleptogenic effect. All three doses demonstrated anticholinergic activity, which increased with the dose. For promethazine, we observed a clear dose-dependent shift from antipsychotic action to cataleptogenic, alongside a notable antimuscarinic effect of all doses. None of promethazine doses showed any resemblance to chloropyramine, which probably indicates its anti-dopaminergic and antimuscarinic effects being able to mask its H 1 -antihistamine effect in the used dose range. In summary, our results demonstrate that NBC combined with PCA can be used to determine the dose-dependency of antipsychotic agents’ effects based on their impact on electrocorticogram parameters. Further development of this method as well as expansion of psychotropic agent electropharmacogram library would allow for more pr
doi_str_mv 10.1134/S0022093023060200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911961943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911961943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-236a44c4f3da4588ea5b4129ba070737ebab1f484058a5e6335cb7487e31763a3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-idn0ySZWnrDxQUf7aGyfSmSWkzcW5cdOdr-Ho-iQkVXIirC-c751w4jJ0LuBRC6asnACkhUyAVGJAAB2wkDKSRkiAP2WjA0cCP2QnRGgCyVOsRe32obNha57Fx2FZ241fBtlXt-IQIibbYdNyXfNJ0dVvtyFW-G-Cq1-nr45PPyxJdx2eeMJphi82yb9rxuuGPtqNTdlTaDeHZzx2zl-v58_Q2Wtzf3E0ni8hJbbpIKmO1drpUS6vjNEUbF1rIrLCQQKISLGwhSp1qiFMbo1EqdkWi0wSVSIyyaswu9r1t8G_vSF2-9u-h6V_mMhMiMyLTqneJvcsFTxSwzNtQb23Y5QLyYcb8z4x9Ru4z1HubFYbf5v9D3-cSdHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911961943</pqid></control><display><type>article</type><title>Pharmacoencephalographic Assessment of Antiphyschotic Agents’ Effect Dose-Dependency in Rats</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sysoev, Yu. I. ; Shits, D. D. ; Puchik, M. M. ; Knyazeva, I. S. ; Korelov, M. S. ; Prikhodko, V. A. ; Titovich, I. A. ; Selizarova, N. O. ; Okovityi, S. V.</creator><creatorcontrib>Sysoev, Yu. I. ; Shits, D. D. ; Puchik, M. M. ; Knyazeva, I. S. ; Korelov, M. S. ; Prikhodko, V. A. ; Titovich, I. A. ; Selizarova, N. O. ; Okovityi, S. V.</creatorcontrib><description>Pharmacoencephalography (pharmaco-EEG) is a prominent instrument for the pharmacological screening of new psychoactive molecules. This experimental approach has not remained a vestige of neurobiological studies, and can be used successfully to complete today’s research objectives. The development and rise to universal use of machine learning techniques opens up novel prospects for the use of pharmaco-EEG data to solve the problems of classification and prognosis. We have previously shown that naïve Bayes classifier (NBC) combined with principal component analysis (PCA) can be used to differentiate between antipsychotic and sedative drug effects as well as to distinguish among the antipsychotics’ effects. In the present study, we evaluated the possibility to employ this method to assess the dose-dependency of antipsychotic effects. The experiments were carried out in white outbred male rats with chronically implanted electrocorticographic electrodes. As the agents of interest, we chose two drugs with antipsychotic activity, chlorpromazine and promethazine, in three doses each (0.1, 1, 10 mg/kg and 0.5, 5 and 20 mg/kg, respectively). The training set, used as a reference to determine the pharmacological effects of the agents of interest, included the D 2 -dopamine receptor blocker haloperidol, M-cholinergic receptor blocker tropicamide, H 1 -histamine receptor blocker chloropyramine, the sedative dexmedetomidine, and the anxiolytic phenazepam. We have shown that the lowest chlorpromazine dose (0.1 mg/kg) can be characterized as antipsychotic with a marked histaminolytic effect, while the highest one (10 mg/kg) exhibits predominantly antipsychotic activity with a cataleptogenic effect. All three doses demonstrated anticholinergic activity, which increased with the dose. For promethazine, we observed a clear dose-dependent shift from antipsychotic action to cataleptogenic, alongside a notable antimuscarinic effect of all doses. None of promethazine doses showed any resemblance to chloropyramine, which probably indicates its anti-dopaminergic and antimuscarinic effects being able to mask its H 1 -antihistamine effect in the used dose range. In summary, our results demonstrate that NBC combined with PCA can be used to determine the dose-dependency of antipsychotic agents’ effects based on their impact on electrocorticogram parameters. Further development of this method as well as expansion of psychotropic agent electropharmacogram library would allow for more precise prediction of pharmacological activity of the agents of interest.</description><identifier>ISSN: 0022-0930</identifier><identifier>EISSN: 1608-3202</identifier><identifier>DOI: 10.1134/S0022093023060200</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acetylcholine receptors ; Animal Physiology ; Anticholinergics ; Antihistamines ; Antipsychotics ; Biochemistry ; Biomedical and Life Sciences ; Chlorpromazine ; Dopamine D2 receptors ; EEG ; Evolutionary Biology ; Experimental Papers ; Haloperidol ; Histamine receptors ; Life Sciences ; Principal components analysis ; Promethazine ; Psychotropic drugs</subject><ispartof>Journal of evolutionary biochemistry and physiology, 2023-11, Vol.59 (6), p.2153-2167</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-236a44c4f3da4588ea5b4129ba070737ebab1f484058a5e6335cb7487e31763a3</citedby><cites>FETCH-LOGICAL-c246t-236a44c4f3da4588ea5b4129ba070737ebab1f484058a5e6335cb7487e31763a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0022093023060200$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0022093023060200$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Sysoev, Yu. I.</creatorcontrib><creatorcontrib>Shits, D. D.</creatorcontrib><creatorcontrib>Puchik, M. M.</creatorcontrib><creatorcontrib>Knyazeva, I. S.</creatorcontrib><creatorcontrib>Korelov, M. S.</creatorcontrib><creatorcontrib>Prikhodko, V. A.</creatorcontrib><creatorcontrib>Titovich, I. A.</creatorcontrib><creatorcontrib>Selizarova, N. O.</creatorcontrib><creatorcontrib>Okovityi, S. V.</creatorcontrib><title>Pharmacoencephalographic Assessment of Antiphyschotic Agents’ Effect Dose-Dependency in Rats</title><title>Journal of evolutionary biochemistry and physiology</title><addtitle>J Evol Biochem Phys</addtitle><description>Pharmacoencephalography (pharmaco-EEG) is a prominent instrument for the pharmacological screening of new psychoactive molecules. This experimental approach has not remained a vestige of neurobiological studies, and can be used successfully to complete today’s research objectives. The development and rise to universal use of machine learning techniques opens up novel prospects for the use of pharmaco-EEG data to solve the problems of classification and prognosis. We have previously shown that naïve Bayes classifier (NBC) combined with principal component analysis (PCA) can be used to differentiate between antipsychotic and sedative drug effects as well as to distinguish among the antipsychotics’ effects. In the present study, we evaluated the possibility to employ this method to assess the dose-dependency of antipsychotic effects. The experiments were carried out in white outbred male rats with chronically implanted electrocorticographic electrodes. As the agents of interest, we chose two drugs with antipsychotic activity, chlorpromazine and promethazine, in three doses each (0.1, 1, 10 mg/kg and 0.5, 5 and 20 mg/kg, respectively). The training set, used as a reference to determine the pharmacological effects of the agents of interest, included the D 2 -dopamine receptor blocker haloperidol, M-cholinergic receptor blocker tropicamide, H 1 -histamine receptor blocker chloropyramine, the sedative dexmedetomidine, and the anxiolytic phenazepam. We have shown that the lowest chlorpromazine dose (0.1 mg/kg) can be characterized as antipsychotic with a marked histaminolytic effect, while the highest one (10 mg/kg) exhibits predominantly antipsychotic activity with a cataleptogenic effect. All three doses demonstrated anticholinergic activity, which increased with the dose. For promethazine, we observed a clear dose-dependent shift from antipsychotic action to cataleptogenic, alongside a notable antimuscarinic effect of all doses. None of promethazine doses showed any resemblance to chloropyramine, which probably indicates its anti-dopaminergic and antimuscarinic effects being able to mask its H 1 -antihistamine effect in the used dose range. In summary, our results demonstrate that NBC combined with PCA can be used to determine the dose-dependency of antipsychotic agents’ effects based on their impact on electrocorticogram parameters. Further development of this method as well as expansion of psychotropic agent electropharmacogram library would allow for more precise prediction of pharmacological activity of the agents of interest.</description><subject>Acetylcholine receptors</subject><subject>Animal Physiology</subject><subject>Anticholinergics</subject><subject>Antihistamines</subject><subject>Antipsychotics</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chlorpromazine</subject><subject>Dopamine D2 receptors</subject><subject>EEG</subject><subject>Evolutionary Biology</subject><subject>Experimental Papers</subject><subject>Haloperidol</subject><subject>Histamine receptors</subject><subject>Life Sciences</subject><subject>Principal components analysis</subject><subject>Promethazine</subject><subject>Psychotropic drugs</subject><issn>0022-0930</issn><issn>1608-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AUhQdRsFYfwN2A6-idn0ySZWnrDxQUf7aGyfSmSWkzcW5cdOdr-Ho-iQkVXIirC-c751w4jJ0LuBRC6asnACkhUyAVGJAAB2wkDKSRkiAP2WjA0cCP2QnRGgCyVOsRe32obNha57Fx2FZ241fBtlXt-IQIibbYdNyXfNJ0dVvtyFW-G-Cq1-nr45PPyxJdx2eeMJphi82yb9rxuuGPtqNTdlTaDeHZzx2zl-v58_Q2Wtzf3E0ni8hJbbpIKmO1drpUS6vjNEUbF1rIrLCQQKISLGwhSp1qiFMbo1EqdkWi0wSVSIyyaswu9r1t8G_vSF2-9u-h6V_mMhMiMyLTqneJvcsFTxSwzNtQb23Y5QLyYcb8z4x9Ru4z1HubFYbf5v9D3-cSdHI</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Sysoev, Yu. I.</creator><creator>Shits, D. D.</creator><creator>Puchik, M. M.</creator><creator>Knyazeva, I. S.</creator><creator>Korelov, M. S.</creator><creator>Prikhodko, V. A.</creator><creator>Titovich, I. A.</creator><creator>Selizarova, N. O.</creator><creator>Okovityi, S. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>20231101</creationdate><title>Pharmacoencephalographic Assessment of Antiphyschotic Agents’ Effect Dose-Dependency in Rats</title><author>Sysoev, Yu. I. ; Shits, D. D. ; Puchik, M. M. ; Knyazeva, I. S. ; Korelov, M. S. ; Prikhodko, V. A. ; Titovich, I. A. ; Selizarova, N. O. ; Okovityi, S. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-236a44c4f3da4588ea5b4129ba070737ebab1f484058a5e6335cb7487e31763a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetylcholine receptors</topic><topic>Animal Physiology</topic><topic>Anticholinergics</topic><topic>Antihistamines</topic><topic>Antipsychotics</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chlorpromazine</topic><topic>Dopamine D2 receptors</topic><topic>EEG</topic><topic>Evolutionary Biology</topic><topic>Experimental Papers</topic><topic>Haloperidol</topic><topic>Histamine receptors</topic><topic>Life Sciences</topic><topic>Principal components analysis</topic><topic>Promethazine</topic><topic>Psychotropic drugs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sysoev, Yu. I.</creatorcontrib><creatorcontrib>Shits, D. D.</creatorcontrib><creatorcontrib>Puchik, M. M.</creatorcontrib><creatorcontrib>Knyazeva, I. S.</creatorcontrib><creatorcontrib>Korelov, M. S.</creatorcontrib><creatorcontrib>Prikhodko, V. A.</creatorcontrib><creatorcontrib>Titovich, I. A.</creatorcontrib><creatorcontrib>Selizarova, N. O.</creatorcontrib><creatorcontrib>Okovityi, S. V.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of evolutionary biochemistry and physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sysoev, Yu. I.</au><au>Shits, D. D.</au><au>Puchik, M. M.</au><au>Knyazeva, I. S.</au><au>Korelov, M. S.</au><au>Prikhodko, V. A.</au><au>Titovich, I. A.</au><au>Selizarova, N. O.</au><au>Okovityi, S. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pharmacoencephalographic Assessment of Antiphyschotic Agents’ Effect Dose-Dependency in Rats</atitle><jtitle>Journal of evolutionary biochemistry and physiology</jtitle><stitle>J Evol Biochem Phys</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>2153</spage><epage>2167</epage><pages>2153-2167</pages><issn>0022-0930</issn><eissn>1608-3202</eissn><abstract>Pharmacoencephalography (pharmaco-EEG) is a prominent instrument for the pharmacological screening of new psychoactive molecules. This experimental approach has not remained a vestige of neurobiological studies, and can be used successfully to complete today’s research objectives. The development and rise to universal use of machine learning techniques opens up novel prospects for the use of pharmaco-EEG data to solve the problems of classification and prognosis. We have previously shown that naïve Bayes classifier (NBC) combined with principal component analysis (PCA) can be used to differentiate between antipsychotic and sedative drug effects as well as to distinguish among the antipsychotics’ effects. In the present study, we evaluated the possibility to employ this method to assess the dose-dependency of antipsychotic effects. The experiments were carried out in white outbred male rats with chronically implanted electrocorticographic electrodes. As the agents of interest, we chose two drugs with antipsychotic activity, chlorpromazine and promethazine, in three doses each (0.1, 1, 10 mg/kg and 0.5, 5 and 20 mg/kg, respectively). The training set, used as a reference to determine the pharmacological effects of the agents of interest, included the D 2 -dopamine receptor blocker haloperidol, M-cholinergic receptor blocker tropicamide, H 1 -histamine receptor blocker chloropyramine, the sedative dexmedetomidine, and the anxiolytic phenazepam. We have shown that the lowest chlorpromazine dose (0.1 mg/kg) can be characterized as antipsychotic with a marked histaminolytic effect, while the highest one (10 mg/kg) exhibits predominantly antipsychotic activity with a cataleptogenic effect. All three doses demonstrated anticholinergic activity, which increased with the dose. For promethazine, we observed a clear dose-dependent shift from antipsychotic action to cataleptogenic, alongside a notable antimuscarinic effect of all doses. None of promethazine doses showed any resemblance to chloropyramine, which probably indicates its anti-dopaminergic and antimuscarinic effects being able to mask its H 1 -antihistamine effect in the used dose range. In summary, our results demonstrate that NBC combined with PCA can be used to determine the dose-dependency of antipsychotic agents’ effects based on their impact on electrocorticogram parameters. Further development of this method as well as expansion of psychotropic agent electropharmacogram library would allow for more precise prediction of pharmacological activity of the agents of interest.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0022093023060200</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0930
ispartof Journal of evolutionary biochemistry and physiology, 2023-11, Vol.59 (6), p.2153-2167
issn 0022-0930
1608-3202
language eng
recordid cdi_proquest_journals_2911961943
source SpringerLink Journals - AutoHoldings
subjects Acetylcholine receptors
Animal Physiology
Anticholinergics
Antihistamines
Antipsychotics
Biochemistry
Biomedical and Life Sciences
Chlorpromazine
Dopamine D2 receptors
EEG
Evolutionary Biology
Experimental Papers
Haloperidol
Histamine receptors
Life Sciences
Principal components analysis
Promethazine
Psychotropic drugs
title Pharmacoencephalographic Assessment of Antiphyschotic Agents’ Effect Dose-Dependency in Rats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A15%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pharmacoencephalographic%20Assessment%20of%20Antiphyschotic%20Agents%E2%80%99%20Effect%20Dose-Dependency%20in%20Rats&rft.jtitle=Journal%20of%20evolutionary%20biochemistry%20and%20physiology&rft.au=Sysoev,%20Yu.%20I.&rft.date=2023-11-01&rft.volume=59&rft.issue=6&rft.spage=2153&rft.epage=2167&rft.pages=2153-2167&rft.issn=0022-0930&rft.eissn=1608-3202&rft_id=info:doi/10.1134/S0022093023060200&rft_dat=%3Cproquest_cross%3E2911961943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911961943&rft_id=info:pmid/&rfr_iscdi=true