Application of Benthic Microbial Fuel Cells in Systems of Year-Round Monitoring of Water Environment Parameters

The bioelectrogenic activity of sediments of the natural microbial assemblage of Peter the Great Bay, Sea of Japan, was studied in a year-round experiment with parallel temperature, illumination, and water electrical conductivity monitoring using benthic microbial fuel cells (MFC) and automatic onli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oceanology (Washington. 1965) 2023-12, Vol.63 (6), p.915-924
Hauptverfasser: Volchenko, N. N., Lazukin, A. A., Maslennikov, S. I., Pakhlevanyan, A. A., Samkov, A. A., Khudokormov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 924
container_issue 6
container_start_page 915
container_title Oceanology (Washington. 1965)
container_volume 63
creator Volchenko, N. N.
Lazukin, A. A.
Maslennikov, S. I.
Pakhlevanyan, A. A.
Samkov, A. A.
Khudokormov, A. A.
description The bioelectrogenic activity of sediments of the natural microbial assemblage of Peter the Great Bay, Sea of Japan, was studied in a year-round experiment with parallel temperature, illumination, and water electrical conductivity monitoring using benthic microbial fuel cells (MFC) and automatic online monitoring. Several variants of underwater devices, including benthic microbial fuel cells, monitoring water environment sensor, information collection and transmission systems, have been developed. This device has an electrical voltage of up to 216 mV and a specific power of up to 239 mW/m 2 . The electrogenic activity of natural microflora depends on water temperature and reaches a maximum in summer with a temperature of about 20–25°C. The introduction of toxicants such as hydrocarbons and cadmium into sludge led to suppression of microbial electrogenesis. However, the introduction of inductor substances of microbial sulfidogenesis stimulated microbial electrogenesis. The possibility of functioning of the benthic MFC in the field of Peter the Great Bay in different climate periods is shown. It is demonstrated that such experimental devices can be a basis for autonomous stations monitoring the state of the marine environment over a long time period and in a wide range of changing conditions. Automatic recording of water temperature, illumination, and salinity with a frequency of 48 times a day was done over 13 months (November 28, 2019–December 31, 2020). The electrogenic activity of this microbiota upon MFC scaling can potentially become a new renewable energy source for low-power marine electronics, including those used in mariculture.
doi_str_mv 10.1134/S0001437023060164
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911960833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911960833</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-4d3c30d04dbfb726e8e140188dcc3d1b5eda07f33d8f4c6bd093f43b2b23df693</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-V296sy59nGN-wIbiFPGppEmqGV1Sk1bYv7dlgg_i04XzdTmHkHMGl4whv1oDAOM4hRQhA5bxAzJiE2SJmIA4JKOBTgb-mJzEuAFAxnMxIn7WNLVVsrXeUV_Ra-PaD6voyqrgSytretOZms5NXUdqHV3vYmu2cZC-GRmSJ985TVfe2dYH694H4lW2JtCF-7LBu20fSB9lkFvTo_GUHFWyjubs547Jy83ieX6XLB9u7-ezZaLSTLQJ16gQNHBdVuU0zYwwjAMTQiuFmpUToyVMK0QtKq6yUkOOFccyLVPUVZbjmFzsc5vgPzsT22Lju-D6l0WaM5ZnIBB7Fdur-rIxBlMVTbBbGXYFg2LYtfiza-9J957YDIVN-E3-3_QNNEJ6hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911960833</pqid></control><display><type>article</type><title>Application of Benthic Microbial Fuel Cells in Systems of Year-Round Monitoring of Water Environment Parameters</title><source>Springer Nature - Complete Springer Journals</source><creator>Volchenko, N. N. ; Lazukin, A. A. ; Maslennikov, S. I. ; Pakhlevanyan, A. A. ; Samkov, A. A. ; Khudokormov, A. A.</creator><creatorcontrib>Volchenko, N. N. ; Lazukin, A. A. ; Maslennikov, S. I. ; Pakhlevanyan, A. A. ; Samkov, A. A. ; Khudokormov, A. A.</creatorcontrib><description>The bioelectrogenic activity of sediments of the natural microbial assemblage of Peter the Great Bay, Sea of Japan, was studied in a year-round experiment with parallel temperature, illumination, and water electrical conductivity monitoring using benthic microbial fuel cells (MFC) and automatic online monitoring. Several variants of underwater devices, including benthic microbial fuel cells, monitoring water environment sensor, information collection and transmission systems, have been developed. This device has an electrical voltage of up to 216 mV and a specific power of up to 239 mW/m 2 . The electrogenic activity of natural microflora depends on water temperature and reaches a maximum in summer with a temperature of about 20–25°C. The introduction of toxicants such as hydrocarbons and cadmium into sludge led to suppression of microbial electrogenesis. However, the introduction of inductor substances of microbial sulfidogenesis stimulated microbial electrogenesis. The possibility of functioning of the benthic MFC in the field of Peter the Great Bay in different climate periods is shown. It is demonstrated that such experimental devices can be a basis for autonomous stations monitoring the state of the marine environment over a long time period and in a wide range of changing conditions. Automatic recording of water temperature, illumination, and salinity with a frequency of 48 times a day was done over 13 months (November 28, 2019–December 31, 2020). The electrogenic activity of this microbiota upon MFC scaling can potentially become a new renewable energy source for low-power marine electronics, including those used in mariculture.</description><identifier>ISSN: 0001-4370</identifier><identifier>EISSN: 1531-8508</identifier><identifier>DOI: 10.1134/S0001437023060164</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Benthos ; Biochemical fuel cells ; Cadmium ; Data collection ; Earth and Environmental Science ; Earth Sciences ; Electrical conductivity ; Electrical resistivity ; Experimental devices ; Fuel cells ; Fuel technology ; Hydrocarbons ; Illumination ; Inductors ; Instruments and Methods ; Marine aquaculture ; Marine environment ; Microbiota ; Microflora ; Microorganisms ; Monitoring ; Oceanography ; Peter I, Tsar of Russia (1672-1725) ; Power management ; Renewable energy ; Renewable energy sources ; Scaling ; Sediments ; Sludge ; Toxicants ; Water ; Water monitoring ; Water temperature</subject><ispartof>Oceanology (Washington. 1965), 2023-12, Vol.63 (6), p.915-924</ispartof><rights>Pleiades Publishing, Inc. 2023. ISSN 0001-4370, Oceanology, 2023, Vol. 63, No. 6, pp. 915–924. © Pleiades Publishing, Inc., 2023. Russian Text © The Author(s), 2023, published in Okeanologiya, 2023, Vol. 63, No. 6, pp. 1010–1020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-4d3c30d04dbfb726e8e140188dcc3d1b5eda07f33d8f4c6bd093f43b2b23df693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0001437023060164$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0001437023060164$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Volchenko, N. N.</creatorcontrib><creatorcontrib>Lazukin, A. A.</creatorcontrib><creatorcontrib>Maslennikov, S. I.</creatorcontrib><creatorcontrib>Pakhlevanyan, A. A.</creatorcontrib><creatorcontrib>Samkov, A. A.</creatorcontrib><creatorcontrib>Khudokormov, A. A.</creatorcontrib><title>Application of Benthic Microbial Fuel Cells in Systems of Year-Round Monitoring of Water Environment Parameters</title><title>Oceanology (Washington. 1965)</title><addtitle>Oceanology</addtitle><description>The bioelectrogenic activity of sediments of the natural microbial assemblage of Peter the Great Bay, Sea of Japan, was studied in a year-round experiment with parallel temperature, illumination, and water electrical conductivity monitoring using benthic microbial fuel cells (MFC) and automatic online monitoring. Several variants of underwater devices, including benthic microbial fuel cells, monitoring water environment sensor, information collection and transmission systems, have been developed. This device has an electrical voltage of up to 216 mV and a specific power of up to 239 mW/m 2 . The electrogenic activity of natural microflora depends on water temperature and reaches a maximum in summer with a temperature of about 20–25°C. The introduction of toxicants such as hydrocarbons and cadmium into sludge led to suppression of microbial electrogenesis. However, the introduction of inductor substances of microbial sulfidogenesis stimulated microbial electrogenesis. The possibility of functioning of the benthic MFC in the field of Peter the Great Bay in different climate periods is shown. It is demonstrated that such experimental devices can be a basis for autonomous stations monitoring the state of the marine environment over a long time period and in a wide range of changing conditions. Automatic recording of water temperature, illumination, and salinity with a frequency of 48 times a day was done over 13 months (November 28, 2019–December 31, 2020). The electrogenic activity of this microbiota upon MFC scaling can potentially become a new renewable energy source for low-power marine electronics, including those used in mariculture.</description><subject>Benthos</subject><subject>Biochemical fuel cells</subject><subject>Cadmium</subject><subject>Data collection</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Experimental devices</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hydrocarbons</subject><subject>Illumination</subject><subject>Inductors</subject><subject>Instruments and Methods</subject><subject>Marine aquaculture</subject><subject>Marine environment</subject><subject>Microbiota</subject><subject>Microflora</subject><subject>Microorganisms</subject><subject>Monitoring</subject><subject>Oceanography</subject><subject>Peter I, Tsar of Russia (1672-1725)</subject><subject>Power management</subject><subject>Renewable energy</subject><subject>Renewable energy sources</subject><subject>Scaling</subject><subject>Sediments</subject><subject>Sludge</subject><subject>Toxicants</subject><subject>Water</subject><subject>Water monitoring</subject><subject>Water temperature</subject><issn>0001-4370</issn><issn>1531-8508</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-V296sy59nGN-wIbiFPGppEmqGV1Sk1bYv7dlgg_i04XzdTmHkHMGl4whv1oDAOM4hRQhA5bxAzJiE2SJmIA4JKOBTgb-mJzEuAFAxnMxIn7WNLVVsrXeUV_Ra-PaD6voyqrgSytretOZms5NXUdqHV3vYmu2cZC-GRmSJ985TVfe2dYH694H4lW2JtCF-7LBu20fSB9lkFvTo_GUHFWyjubs547Jy83ieX6XLB9u7-ezZaLSTLQJ16gQNHBdVuU0zYwwjAMTQiuFmpUToyVMK0QtKq6yUkOOFccyLVPUVZbjmFzsc5vgPzsT22Lju-D6l0WaM5ZnIBB7Fdur-rIxBlMVTbBbGXYFg2LYtfiza-9J957YDIVN-E3-3_QNNEJ6hg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Volchenko, N. N.</creator><creator>Lazukin, A. A.</creator><creator>Maslennikov, S. I.</creator><creator>Pakhlevanyan, A. A.</creator><creator>Samkov, A. A.</creator><creator>Khudokormov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20231201</creationdate><title>Application of Benthic Microbial Fuel Cells in Systems of Year-Round Monitoring of Water Environment Parameters</title><author>Volchenko, N. N. ; Lazukin, A. A. ; Maslennikov, S. I. ; Pakhlevanyan, A. A. ; Samkov, A. A. ; Khudokormov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-4d3c30d04dbfb726e8e140188dcc3d1b5eda07f33d8f4c6bd093f43b2b23df693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benthos</topic><topic>Biochemical fuel cells</topic><topic>Cadmium</topic><topic>Data collection</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Experimental devices</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hydrocarbons</topic><topic>Illumination</topic><topic>Inductors</topic><topic>Instruments and Methods</topic><topic>Marine aquaculture</topic><topic>Marine environment</topic><topic>Microbiota</topic><topic>Microflora</topic><topic>Microorganisms</topic><topic>Monitoring</topic><topic>Oceanography</topic><topic>Peter I, Tsar of Russia (1672-1725)</topic><topic>Power management</topic><topic>Renewable energy</topic><topic>Renewable energy sources</topic><topic>Scaling</topic><topic>Sediments</topic><topic>Sludge</topic><topic>Toxicants</topic><topic>Water</topic><topic>Water monitoring</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volchenko, N. N.</creatorcontrib><creatorcontrib>Lazukin, A. A.</creatorcontrib><creatorcontrib>Maslennikov, S. I.</creatorcontrib><creatorcontrib>Pakhlevanyan, A. A.</creatorcontrib><creatorcontrib>Samkov, A. A.</creatorcontrib><creatorcontrib>Khudokormov, A. A.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Oceanology (Washington. 1965)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volchenko, N. N.</au><au>Lazukin, A. A.</au><au>Maslennikov, S. I.</au><au>Pakhlevanyan, A. A.</au><au>Samkov, A. A.</au><au>Khudokormov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Benthic Microbial Fuel Cells in Systems of Year-Round Monitoring of Water Environment Parameters</atitle><jtitle>Oceanology (Washington. 1965)</jtitle><stitle>Oceanology</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>63</volume><issue>6</issue><spage>915</spage><epage>924</epage><pages>915-924</pages><issn>0001-4370</issn><eissn>1531-8508</eissn><abstract>The bioelectrogenic activity of sediments of the natural microbial assemblage of Peter the Great Bay, Sea of Japan, was studied in a year-round experiment with parallel temperature, illumination, and water electrical conductivity monitoring using benthic microbial fuel cells (MFC) and automatic online monitoring. Several variants of underwater devices, including benthic microbial fuel cells, monitoring water environment sensor, information collection and transmission systems, have been developed. This device has an electrical voltage of up to 216 mV and a specific power of up to 239 mW/m 2 . The electrogenic activity of natural microflora depends on water temperature and reaches a maximum in summer with a temperature of about 20–25°C. The introduction of toxicants such as hydrocarbons and cadmium into sludge led to suppression of microbial electrogenesis. However, the introduction of inductor substances of microbial sulfidogenesis stimulated microbial electrogenesis. The possibility of functioning of the benthic MFC in the field of Peter the Great Bay in different climate periods is shown. It is demonstrated that such experimental devices can be a basis for autonomous stations monitoring the state of the marine environment over a long time period and in a wide range of changing conditions. Automatic recording of water temperature, illumination, and salinity with a frequency of 48 times a day was done over 13 months (November 28, 2019–December 31, 2020). The electrogenic activity of this microbiota upon MFC scaling can potentially become a new renewable energy source for low-power marine electronics, including those used in mariculture.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0001437023060164</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-4370
ispartof Oceanology (Washington. 1965), 2023-12, Vol.63 (6), p.915-924
issn 0001-4370
1531-8508
language eng
recordid cdi_proquest_journals_2911960833
source Springer Nature - Complete Springer Journals
subjects Benthos
Biochemical fuel cells
Cadmium
Data collection
Earth and Environmental Science
Earth Sciences
Electrical conductivity
Electrical resistivity
Experimental devices
Fuel cells
Fuel technology
Hydrocarbons
Illumination
Inductors
Instruments and Methods
Marine aquaculture
Marine environment
Microbiota
Microflora
Microorganisms
Monitoring
Oceanography
Peter I, Tsar of Russia (1672-1725)
Power management
Renewable energy
Renewable energy sources
Scaling
Sediments
Sludge
Toxicants
Water
Water monitoring
Water temperature
title Application of Benthic Microbial Fuel Cells in Systems of Year-Round Monitoring of Water Environment Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T22%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Benthic%20Microbial%20Fuel%20Cells%20in%20Systems%20of%20Year-Round%20Monitoring%20of%20Water%20Environment%20Parameters&rft.jtitle=Oceanology%20(Washington.%201965)&rft.au=Volchenko,%20N.%20N.&rft.date=2023-12-01&rft.volume=63&rft.issue=6&rft.spage=915&rft.epage=924&rft.pages=915-924&rft.issn=0001-4370&rft.eissn=1531-8508&rft_id=info:doi/10.1134/S0001437023060164&rft_dat=%3Cproquest_cross%3E2911960833%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911960833&rft_id=info:pmid/&rfr_iscdi=true