A contrastive learning-based iterative network for remote sensing image super-resolution

Many deep convolutional neural network(CNN)-based methods have achieved significant success in noise-free image super-resolution(SR) tasks. However, these methods produce unsatisfactory results for noisy remote sensing imagery. Recently, some practical SR models have been proposed to eliminate the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2024, Vol.83 (3), p.8331-8357
Hauptverfasser: Wang, Yan, Dong, Minggang, Ye, Wei, Liu, Deao, Gan, Guojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8357
container_issue 3
container_start_page 8331
container_title Multimedia tools and applications
container_volume 83
creator Wang, Yan
Dong, Minggang
Ye, Wei
Liu, Deao
Gan, Guojun
description Many deep convolutional neural network(CNN)-based methods have achieved significant success in noise-free image super-resolution(SR) tasks. However, these methods produce unsatisfactory results for noisy remote sensing imagery. Recently, some practical SR models have been proposed to eliminate the negative impact of noise during reconstruction process, but they still have the problem of insufficient or excessive denoising. To address this issue, this article proposes a contrastive learning-based iterative network(CLIN) for noisy remote sensing image SR. Specifically, CLIN adopts an iterative cooperation approach, which includes an evaluator and a reconstructor. First, the evaluator evaluates the noise levels of low resolution(LR) images. Then the reconstructor utilizes LR images and their noise levels to reconstruct the SR images, which are returned to the evaluator for noise evaluation again. Furthermore, in order to make the reconstructor retain more spatial details, we design a global feature fusion block in the reconstructor to fuse the local features and the global features. To further suppress the noise, we propose a novel contrastive penalty strategy to train our model away from the noise domain. Compared with state-of-the-art SR methods, the peak signal to noise ratio (PSNR) improvements of our approach are about 0.04-0.78 dB on RSSCN7 dataset with a scale factor of 2. Qualitative and quantitative experiments on several noisy satellite image datasets demonstrate that the proposed CLIN achieves promising performance under different noise levels.
doi_str_mv 10.1007/s11042-023-15551-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911655960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911655960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-da3f9d5a29c7213590a1694bdd9274a615b1964b3259ff18b12326ad58e27e423</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwueo5lks9scS_ELCl4UvIXs7mzZ2iZ1kir-e1NX8OZpZpj33rx5jF2CuAYh6psIIErJhVQctNbA5RGbgK4Vr2sJx7lXM8FrLeCUncW4FgIqLcsJe50XbfCJXEzDBxYbdOQHv-KNi9gVQ0JyPwuP6TPQW9EHKgi3IWER0ccMLYatW-Vpv0PihDFs9mkI_pyd9G4T8eK3TtnL3e3z4oEvn-4fF_MlbxWYxDunetNpJ02bjSpthIPKlE3XGVmXrgLdgKnKRklt-h5mDUglK9fpGcoaS6mm7GrU3VF432NMdh325PNJKw3kL7WpREbJEdVSiJGwtzvKvunLgrCHBO2YoM0J2p8E7UFajaSYwX6F9Cf9D-sbwshz8Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911655960</pqid></control><display><type>article</type><title>A contrastive learning-based iterative network for remote sensing image super-resolution</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Yan ; Dong, Minggang ; Ye, Wei ; Liu, Deao ; Gan, Guojun</creator><creatorcontrib>Wang, Yan ; Dong, Minggang ; Ye, Wei ; Liu, Deao ; Gan, Guojun</creatorcontrib><description>Many deep convolutional neural network(CNN)-based methods have achieved significant success in noise-free image super-resolution(SR) tasks. However, these methods produce unsatisfactory results for noisy remote sensing imagery. Recently, some practical SR models have been proposed to eliminate the negative impact of noise during reconstruction process, but they still have the problem of insufficient or excessive denoising. To address this issue, this article proposes a contrastive learning-based iterative network(CLIN) for noisy remote sensing image SR. Specifically, CLIN adopts an iterative cooperation approach, which includes an evaluator and a reconstructor. First, the evaluator evaluates the noise levels of low resolution(LR) images. Then the reconstructor utilizes LR images and their noise levels to reconstruct the SR images, which are returned to the evaluator for noise evaluation again. Furthermore, in order to make the reconstructor retain more spatial details, we design a global feature fusion block in the reconstructor to fuse the local features and the global features. To further suppress the noise, we propose a novel contrastive penalty strategy to train our model away from the noise domain. Compared with state-of-the-art SR methods, the peak signal to noise ratio (PSNR) improvements of our approach are about 0.04-0.78 dB on RSSCN7 dataset with a scale factor of 2. Qualitative and quantitative experiments on several noisy satellite image datasets demonstrate that the proposed CLIN achieves promising performance under different noise levels.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-023-15551-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial neural networks ; Computer Communication Networks ; Computer Science ; Data Structures and Information Theory ; Datasets ; Image reconstruction ; Image resolution ; Iterative methods ; Learning ; Multimedia Information Systems ; Noise levels ; Production methods ; Remote sensing ; Satellite imagery ; Signal to noise ratio ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2024, Vol.83 (3), p.8331-8357</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-da3f9d5a29c7213590a1694bdd9274a615b1964b3259ff18b12326ad58e27e423</citedby><cites>FETCH-LOGICAL-c319t-da3f9d5a29c7213590a1694bdd9274a615b1964b3259ff18b12326ad58e27e423</cites><orcidid>0000-0001-7078-3942</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-023-15551-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-023-15551-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Dong, Minggang</creatorcontrib><creatorcontrib>Ye, Wei</creatorcontrib><creatorcontrib>Liu, Deao</creatorcontrib><creatorcontrib>Gan, Guojun</creatorcontrib><title>A contrastive learning-based iterative network for remote sensing image super-resolution</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>Many deep convolutional neural network(CNN)-based methods have achieved significant success in noise-free image super-resolution(SR) tasks. However, these methods produce unsatisfactory results for noisy remote sensing imagery. Recently, some practical SR models have been proposed to eliminate the negative impact of noise during reconstruction process, but they still have the problem of insufficient or excessive denoising. To address this issue, this article proposes a contrastive learning-based iterative network(CLIN) for noisy remote sensing image SR. Specifically, CLIN adopts an iterative cooperation approach, which includes an evaluator and a reconstructor. First, the evaluator evaluates the noise levels of low resolution(LR) images. Then the reconstructor utilizes LR images and their noise levels to reconstruct the SR images, which are returned to the evaluator for noise evaluation again. Furthermore, in order to make the reconstructor retain more spatial details, we design a global feature fusion block in the reconstructor to fuse the local features and the global features. To further suppress the noise, we propose a novel contrastive penalty strategy to train our model away from the noise domain. Compared with state-of-the-art SR methods, the peak signal to noise ratio (PSNR) improvements of our approach are about 0.04-0.78 dB on RSSCN7 dataset with a scale factor of 2. Qualitative and quantitative experiments on several noisy satellite image datasets demonstrate that the proposed CLIN achieves promising performance under different noise levels.</description><subject>Artificial neural networks</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>Multimedia Information Systems</subject><subject>Noise levels</subject><subject>Production methods</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Signal to noise ratio</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwueo5lks9scS_ELCl4UvIXs7mzZ2iZ1kir-e1NX8OZpZpj33rx5jF2CuAYh6psIIErJhVQctNbA5RGbgK4Vr2sJx7lXM8FrLeCUncW4FgIqLcsJe50XbfCJXEzDBxYbdOQHv-KNi9gVQ0JyPwuP6TPQW9EHKgi3IWER0ccMLYatW-Vpv0PihDFs9mkI_pyd9G4T8eK3TtnL3e3z4oEvn-4fF_MlbxWYxDunetNpJ02bjSpthIPKlE3XGVmXrgLdgKnKRklt-h5mDUglK9fpGcoaS6mm7GrU3VF432NMdh325PNJKw3kL7WpREbJEdVSiJGwtzvKvunLgrCHBO2YoM0J2p8E7UFajaSYwX6F9Cf9D-sbwshz8Q</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Yan</creator><creator>Dong, Minggang</creator><creator>Ye, Wei</creator><creator>Liu, Deao</creator><creator>Gan, Guojun</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7078-3942</orcidid></search><sort><creationdate>2024</creationdate><title>A contrastive learning-based iterative network for remote sensing image super-resolution</title><author>Wang, Yan ; Dong, Minggang ; Ye, Wei ; Liu, Deao ; Gan, Guojun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-da3f9d5a29c7213590a1694bdd9274a615b1964b3259ff18b12326ad58e27e423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>Multimedia Information Systems</topic><topic>Noise levels</topic><topic>Production methods</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Signal to noise ratio</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Dong, Minggang</creatorcontrib><creatorcontrib>Ye, Wei</creatorcontrib><creatorcontrib>Liu, Deao</creatorcontrib><creatorcontrib>Gan, Guojun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yan</au><au>Dong, Minggang</au><au>Ye, Wei</au><au>Liu, Deao</au><au>Gan, Guojun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contrastive learning-based iterative network for remote sensing image super-resolution</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2024</date><risdate>2024</risdate><volume>83</volume><issue>3</issue><spage>8331</spage><epage>8357</epage><pages>8331-8357</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>Many deep convolutional neural network(CNN)-based methods have achieved significant success in noise-free image super-resolution(SR) tasks. However, these methods produce unsatisfactory results for noisy remote sensing imagery. Recently, some practical SR models have been proposed to eliminate the negative impact of noise during reconstruction process, but they still have the problem of insufficient or excessive denoising. To address this issue, this article proposes a contrastive learning-based iterative network(CLIN) for noisy remote sensing image SR. Specifically, CLIN adopts an iterative cooperation approach, which includes an evaluator and a reconstructor. First, the evaluator evaluates the noise levels of low resolution(LR) images. Then the reconstructor utilizes LR images and their noise levels to reconstruct the SR images, which are returned to the evaluator for noise evaluation again. Furthermore, in order to make the reconstructor retain more spatial details, we design a global feature fusion block in the reconstructor to fuse the local features and the global features. To further suppress the noise, we propose a novel contrastive penalty strategy to train our model away from the noise domain. Compared with state-of-the-art SR methods, the peak signal to noise ratio (PSNR) improvements of our approach are about 0.04-0.78 dB on RSSCN7 dataset with a scale factor of 2. Qualitative and quantitative experiments on several noisy satellite image datasets demonstrate that the proposed CLIN achieves promising performance under different noise levels.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-023-15551-2</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-7078-3942</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1380-7501
ispartof Multimedia tools and applications, 2024, Vol.83 (3), p.8331-8357
issn 1380-7501
1573-7721
language eng
recordid cdi_proquest_journals_2911655960
source Springer Nature - Complete Springer Journals
subjects Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Image reconstruction
Image resolution
Iterative methods
Learning
Multimedia Information Systems
Noise levels
Production methods
Remote sensing
Satellite imagery
Signal to noise ratio
Special Purpose and Application-Based Systems
title A contrastive learning-based iterative network for remote sensing image super-resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A48%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contrastive%20learning-based%20iterative%20network%20for%20remote%20sensing%20image%20super-resolution&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Wang,%20Yan&rft.date=2024&rft.volume=83&rft.issue=3&rft.spage=8331&rft.epage=8357&rft.pages=8331-8357&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-023-15551-2&rft_dat=%3Cproquest_cross%3E2911655960%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911655960&rft_id=info:pmid/&rfr_iscdi=true