Wavelet Probabilistic Neural Networks

In this article, a novel wavelet probabilistic neural network (WPNN), which is a generative-learning wavelet neural network that relies on the wavelet-based estimation of class probability densities, is proposed. In this new neural network approach, the number of basis functions employed is independ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-01, Vol.35 (1), p.376-389
Hauptverfasser: Garcia-Trevino, Edgar S., Yang, Pu, Barria, Javier A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 1
container_start_page 376
container_title IEEE transaction on neural networks and learning systems
container_volume 35
creator Garcia-Trevino, Edgar S.
Yang, Pu
Barria, Javier A.
description In this article, a novel wavelet probabilistic neural network (WPNN), which is a generative-learning wavelet neural network that relies on the wavelet-based estimation of class probability densities, is proposed. In this new neural network approach, the number of basis functions employed is independent of the number of data inputs, and in that sense, it overcomes the well-known drawback of traditional probabilistic neural networks (PNNs). Since the parameters of the proposed network are updated at a low and constant computational cost, it is particularly aimed at data stream classification and anomaly detection in off-line settings and online environments where the length of data is assumed to be unconstrained. Both synthetic and real-world datasets are used to assess the proposed WPNN. Significant performance enhancements are attained compared to state-of-the-art algorithms.
doi_str_mv 10.1109/TNNLS.2022.3174705
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2911489178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9782514</ieee_id><sourcerecordid>2670063809</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-132b2ba895cf7db940ca1b7686cdd19d21542013ed7c971a95553eb8e1e0cb1a3</originalsourceid><addsrcrecordid>eNpdkEtLAzEQgIMoVmr_gIIURPDSmkk2r6MUX1CqYEVvIclOYeu2W5NdxX_v1tYenMsMzDfDzEfICdAhADVX08lk_DxklLEhB5UpKvbIEQPJBoxrvb-r1VuH9FKa0zYkFTIzh6TDhQQFWh6Ri1f3iSXW_adYeeeLskh1EfoTbKIr21R_VfE9HZODmSsT9ra5S15ub6aj-8H48e5hdD0eBG5EPQDOPPNOGxFmKvcmo8GBV1LLkOdgcgYiYxQ45ioYBc4IITh6jYA0eHC8Sy43e1ex-mgw1XZRpIBl6ZZYNckyqdovuKamRc__ofOqicv2OssMQKYNKN1SbEOFWKUUcWZXsVi4-G2B2rVH--vRrj3arcd26Gy7uvELzHcjf9Za4HQDFIi4axulmYCM_wBvxHSO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911489178</pqid></control><display><type>article</type><title>Wavelet Probabilistic Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Garcia-Trevino, Edgar S. ; Yang, Pu ; Barria, Javier A.</creator><creatorcontrib>Garcia-Trevino, Edgar S. ; Yang, Pu ; Barria, Javier A.</creatorcontrib><description>In this article, a novel wavelet probabilistic neural network (WPNN), which is a generative-learning wavelet neural network that relies on the wavelet-based estimation of class probability densities, is proposed. In this new neural network approach, the number of basis functions employed is independent of the number of data inputs, and in that sense, it overcomes the well-known drawback of traditional probabilistic neural networks (PNNs). Since the parameters of the proposed network are updated at a low and constant computational cost, it is particularly aimed at data stream classification and anomaly detection in off-line settings and online environments where the length of data is assumed to be unconstrained. Both synthetic and real-world datasets are used to assess the proposed WPNN. Significant performance enhancements are attained compared to state-of-the-art algorithms.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2022.3174705</identifier><identifier>PMID: 35617186</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anomalies ; Basis functions ; Biological neural networks ; Data stream classification ; Data transmission ; Estimation ; Neural networks ; Neurons ; nonstationary environment ; online learning ; Probabilistic logic ; probabilistic neural network (PNN) ; Statistical analysis ; Stream classification ; Training ; Training data ; wavelet density estimation ; wavelet frames ; wavelet probabilistic neural networks (WPNNs)</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-01, Vol.35 (1), p.376-389</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-132b2ba895cf7db940ca1b7686cdd19d21542013ed7c971a95553eb8e1e0cb1a3</citedby><cites>FETCH-LOGICAL-c395t-132b2ba895cf7db940ca1b7686cdd19d21542013ed7c971a95553eb8e1e0cb1a3</cites><orcidid>0000-0003-4111-439X ; 0000-0001-5935-555X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9782514$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9782514$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35617186$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Trevino, Edgar S.</creatorcontrib><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Barria, Javier A.</creatorcontrib><title>Wavelet Probabilistic Neural Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>In this article, a novel wavelet probabilistic neural network (WPNN), which is a generative-learning wavelet neural network that relies on the wavelet-based estimation of class probability densities, is proposed. In this new neural network approach, the number of basis functions employed is independent of the number of data inputs, and in that sense, it overcomes the well-known drawback of traditional probabilistic neural networks (PNNs). Since the parameters of the proposed network are updated at a low and constant computational cost, it is particularly aimed at data stream classification and anomaly detection in off-line settings and online environments where the length of data is assumed to be unconstrained. Both synthetic and real-world datasets are used to assess the proposed WPNN. Significant performance enhancements are attained compared to state-of-the-art algorithms.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Basis functions</subject><subject>Biological neural networks</subject><subject>Data stream classification</subject><subject>Data transmission</subject><subject>Estimation</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>nonstationary environment</subject><subject>online learning</subject><subject>Probabilistic logic</subject><subject>probabilistic neural network (PNN)</subject><subject>Statistical analysis</subject><subject>Stream classification</subject><subject>Training</subject><subject>Training data</subject><subject>wavelet density estimation</subject><subject>wavelet frames</subject><subject>wavelet probabilistic neural networks (WPNNs)</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLAzEQgIMoVmr_gIIURPDSmkk2r6MUX1CqYEVvIclOYeu2W5NdxX_v1tYenMsMzDfDzEfICdAhADVX08lk_DxklLEhB5UpKvbIEQPJBoxrvb-r1VuH9FKa0zYkFTIzh6TDhQQFWh6Ri1f3iSXW_adYeeeLskh1EfoTbKIr21R_VfE9HZODmSsT9ra5S15ub6aj-8H48e5hdD0eBG5EPQDOPPNOGxFmKvcmo8GBV1LLkOdgcgYiYxQ45ioYBc4IITh6jYA0eHC8Sy43e1ex-mgw1XZRpIBl6ZZYNckyqdovuKamRc__ofOqicv2OssMQKYNKN1SbEOFWKUUcWZXsVi4-G2B2rVH--vRrj3arcd26Gy7uvELzHcjf9Za4HQDFIi4axulmYCM_wBvxHSO</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Garcia-Trevino, Edgar S.</creator><creator>Yang, Pu</creator><creator>Barria, Javier A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4111-439X</orcidid><orcidid>https://orcid.org/0000-0001-5935-555X</orcidid></search><sort><creationdate>20240101</creationdate><title>Wavelet Probabilistic Neural Networks</title><author>Garcia-Trevino, Edgar S. ; Yang, Pu ; Barria, Javier A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-132b2ba895cf7db940ca1b7686cdd19d21542013ed7c971a95553eb8e1e0cb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Basis functions</topic><topic>Biological neural networks</topic><topic>Data stream classification</topic><topic>Data transmission</topic><topic>Estimation</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>nonstationary environment</topic><topic>online learning</topic><topic>Probabilistic logic</topic><topic>probabilistic neural network (PNN)</topic><topic>Statistical analysis</topic><topic>Stream classification</topic><topic>Training</topic><topic>Training data</topic><topic>wavelet density estimation</topic><topic>wavelet frames</topic><topic>wavelet probabilistic neural networks (WPNNs)</topic><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Trevino, Edgar S.</creatorcontrib><creatorcontrib>Yang, Pu</creatorcontrib><creatorcontrib>Barria, Javier A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia-Trevino, Edgar S.</au><au>Yang, Pu</au><au>Barria, Javier A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wavelet Probabilistic Neural Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>35</volume><issue>1</issue><spage>376</spage><epage>389</epage><pages>376-389</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>In this article, a novel wavelet probabilistic neural network (WPNN), which is a generative-learning wavelet neural network that relies on the wavelet-based estimation of class probability densities, is proposed. In this new neural network approach, the number of basis functions employed is independent of the number of data inputs, and in that sense, it overcomes the well-known drawback of traditional probabilistic neural networks (PNNs). Since the parameters of the proposed network are updated at a low and constant computational cost, it is particularly aimed at data stream classification and anomaly detection in off-line settings and online environments where the length of data is assumed to be unconstrained. Both synthetic and real-world datasets are used to assess the proposed WPNN. Significant performance enhancements are attained compared to state-of-the-art algorithms.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35617186</pmid><doi>10.1109/TNNLS.2022.3174705</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4111-439X</orcidid><orcidid>https://orcid.org/0000-0001-5935-555X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-01, Vol.35 (1), p.376-389
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2911489178
source IEEE Electronic Library (IEL)
subjects Algorithms
Anomalies
Basis functions
Biological neural networks
Data stream classification
Data transmission
Estimation
Neural networks
Neurons
nonstationary environment
online learning
Probabilistic logic
probabilistic neural network (PNN)
Statistical analysis
Stream classification
Training
Training data
wavelet density estimation
wavelet frames
wavelet probabilistic neural networks (WPNNs)
title Wavelet Probabilistic Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wavelet%20Probabilistic%20Neural%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Garcia-Trevino,%20Edgar%20S.&rft.date=2024-01-01&rft.volume=35&rft.issue=1&rft.spage=376&rft.epage=389&rft.pages=376-389&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2022.3174705&rft_dat=%3Cproquest_RIE%3E2670063809%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911489178&rft_id=info:pmid/35617186&rft_ieee_id=9782514&rfr_iscdi=true