Memristor-Inspired Digital Logic Circuits and Comparison With 90-/180-nm CMOS Technologies
Compact low-power devices with ultrafast processing speed are the fundamental building blocks for the development of the state-of-the-art logic systems and memristor prominently fulfills these demands and plays a major role in digital circuit design. In this work, design, implementation, and perform...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on electron devices 2024-01, Vol.71 (1), p.1-7 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | IEEE transactions on electron devices |
container_volume | 71 |
creator | Nawaria, Megha Kumar, Sanjay Gautam, Mohit Kumar Dhakad, Narendra Singh Singh, Rohit Singhal, Sonal Kumar, Pawan Vishvakarma, Santosh Kumar Mukherjee, Shaibal |
description | Compact low-power devices with ultrafast processing speed are the fundamental building blocks for the development of the state-of-the-art logic systems and memristor prominently fulfills these demands and plays a major role in digital circuit design. In this work, design, implementation, and performance evaluation of memristor-based logic gates, such as NOT, AND, NAND, OR, NOR, XOR, and XNOR, and combinational logic circuits, such as adder, subtractor, and 2 \times 1 mux, are presented via SPECTRE in Cadence Virtuoso. Herein, we propose an optimized design of memristor-based logic gates and combinational logic circuits and draw a comparative analysis with the conventional 180-nm complementary metal-oxide-semiconductor (CMOS) technology. The utilized memristor model is thoroughly validated with the experimental results of a high-density Y _{\text{2}} O _{\text{3}} -based memristive crossbar array (MCA), which shows a significantly low values of coefficient of variabilities in device-to-device (D2D) and cycle-to-cycle (C2C) operation. The area, power, and delay calculated from these combinational circuits are found to be reduced by more than 71.4%, 40%, and 54%, respectively, as compared to the conventional 180-nm CMOS technology. The impact of multiple CMOS technology nodes (90 and 180 nm) on the power consumption at the chip-level logic circuit implementation has also been investigated. The adopted memristor-based design significantly improves the performance of various logic designs, which makes it area and power efficient and enables a major breakthrough in designing various low-power, low-cost, ultrafast, and compact circuits. |
doi_str_mv | 10.1109/TED.2023.3278625 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2911475801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10143670</ieee_id><sourcerecordid>2911475801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-bee880e4d2ea049252ce369705bd956c5d980ac886416edbf930b63dfcc7e5533</originalsourceid><addsrcrecordid>eNpNkE1LAzEQQIMoWKt3Dx4CntPmY5NNjrKtWmjpwYrgJexmZ9uU7ofJ9uC_d0t78DQMvDcDD6FHRieMUTPdzGcTTrmYCJ5qxeUVGjEpU2JUoq7RiFKmiRFa3KK7GPfDqpKEj9D3CurgY98Gsmhi5wOUeOa3vs8PeNluvcOZD-7o-4jzpsRZW3f5wLcN_vL9DhtKpkxT0tQ4W60_8AbcrmkPgwjxHt1U-SHCw2WO0efrfJO9k-X6bZG9LInjhvekANCaQlJyyGliuOQOhDIplUVppHKyNJrmTmuVMAVlURlBCyXKyrkUpBRijJ7Pd7vQ_hwh9nbfHkMzvLTcMJakUlM2UPRMudDGGKCyXfB1Hn4to_ZU0A4F7amgvRQclKez4gHgH84SoVIq_gACX2sK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911475801</pqid></control><display><type>article</type><title>Memristor-Inspired Digital Logic Circuits and Comparison With 90-/180-nm CMOS Technologies</title><source>IEEE Electronic Library (IEL)</source><creator>Nawaria, Megha ; Kumar, Sanjay ; Gautam, Mohit Kumar ; Dhakad, Narendra Singh ; Singh, Rohit ; Singhal, Sonal ; Kumar, Pawan ; Vishvakarma, Santosh Kumar ; Mukherjee, Shaibal</creator><creatorcontrib>Nawaria, Megha ; Kumar, Sanjay ; Gautam, Mohit Kumar ; Dhakad, Narendra Singh ; Singh, Rohit ; Singhal, Sonal ; Kumar, Pawan ; Vishvakarma, Santosh Kumar ; Mukherjee, Shaibal</creatorcontrib><description><![CDATA[Compact low-power devices with ultrafast processing speed are the fundamental building blocks for the development of the state-of-the-art logic systems and memristor prominently fulfills these demands and plays a major role in digital circuit design. In this work, design, implementation, and performance evaluation of memristor-based logic gates, such as NOT, AND, NAND, OR, NOR, XOR, and XNOR, and combinational logic circuits, such as adder, subtractor, and 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1 mux, are presented via SPECTRE in Cadence Virtuoso. Herein, we propose an optimized design of memristor-based logic gates and combinational logic circuits and draw a comparative analysis with the conventional 180-nm complementary metal-oxide-semiconductor (CMOS) technology. The utilized memristor model is thoroughly validated with the experimental results of a high-density Y<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula>-based memristive crossbar array (MCA), which shows a significantly low values of coefficient of variabilities in device-to-device (D2D) and cycle-to-cycle (C2C) operation. The area, power, and delay calculated from these combinational circuits are found to be reduced by more than 71.4%, 40%, and 54%, respectively, as compared to the conventional 180-nm CMOS technology. The impact of multiple CMOS technology nodes (90 and 180 nm) on the power consumption at the chip-level logic circuit implementation has also been investigated. The adopted memristor-based design significantly improves the performance of various logic designs, which makes it area and power efficient and enables a major breakthrough in designing various low-power, low-cost, ultrafast, and compact circuits.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2023.3278625</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuit design ; Circuits ; CMOS ; CMOS technology ; Combinational logic circuits ; complementary metal–oxide–semiconductor (CMOS) ; Design ; Design optimization ; Digital electronics ; Gates (circuits) ; Integrated circuit modeling ; Logic circuits ; Logic gates ; Mathematical models ; memristor ; Memristors ; Performance enhancement ; Performance evaluation ; Power consumption ; power efficient ; Power management ; Transistors</subject><ispartof>IEEE transactions on electron devices, 2024-01, Vol.71 (1), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-bee880e4d2ea049252ce369705bd956c5d980ac886416edbf930b63dfcc7e5533</citedby><cites>FETCH-LOGICAL-c292t-bee880e4d2ea049252ce369705bd956c5d980ac886416edbf930b63dfcc7e5533</cites><orcidid>0000-0003-2968-172X ; 0000-0001-5382-2006 ; 0000-0003-4223-0077 ; 0000-0003-2848-1785 ; 0000-0002-9879-7278 ; 0009-0008-2327-9012 ; 0000-0002-0789-337X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10143670$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27915,27916,54749</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10143670$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nawaria, Megha</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Gautam, Mohit Kumar</creatorcontrib><creatorcontrib>Dhakad, Narendra Singh</creatorcontrib><creatorcontrib>Singh, Rohit</creatorcontrib><creatorcontrib>Singhal, Sonal</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Vishvakarma, Santosh Kumar</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><title>Memristor-Inspired Digital Logic Circuits and Comparison With 90-/180-nm CMOS Technologies</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Compact low-power devices with ultrafast processing speed are the fundamental building blocks for the development of the state-of-the-art logic systems and memristor prominently fulfills these demands and plays a major role in digital circuit design. In this work, design, implementation, and performance evaluation of memristor-based logic gates, such as NOT, AND, NAND, OR, NOR, XOR, and XNOR, and combinational logic circuits, such as adder, subtractor, and 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1 mux, are presented via SPECTRE in Cadence Virtuoso. Herein, we propose an optimized design of memristor-based logic gates and combinational logic circuits and draw a comparative analysis with the conventional 180-nm complementary metal-oxide-semiconductor (CMOS) technology. The utilized memristor model is thoroughly validated with the experimental results of a high-density Y<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula>-based memristive crossbar array (MCA), which shows a significantly low values of coefficient of variabilities in device-to-device (D2D) and cycle-to-cycle (C2C) operation. The area, power, and delay calculated from these combinational circuits are found to be reduced by more than 71.4%, 40%, and 54%, respectively, as compared to the conventional 180-nm CMOS technology. The impact of multiple CMOS technology nodes (90 and 180 nm) on the power consumption at the chip-level logic circuit implementation has also been investigated. The adopted memristor-based design significantly improves the performance of various logic designs, which makes it area and power efficient and enables a major breakthrough in designing various low-power, low-cost, ultrafast, and compact circuits.]]></description><subject>Circuit design</subject><subject>Circuits</subject><subject>CMOS</subject><subject>CMOS technology</subject><subject>Combinational logic circuits</subject><subject>complementary metal–oxide–semiconductor (CMOS)</subject><subject>Design</subject><subject>Design optimization</subject><subject>Digital electronics</subject><subject>Gates (circuits)</subject><subject>Integrated circuit modeling</subject><subject>Logic circuits</subject><subject>Logic gates</subject><subject>Mathematical models</subject><subject>memristor</subject><subject>Memristors</subject><subject>Performance enhancement</subject><subject>Performance evaluation</subject><subject>Power consumption</subject><subject>power efficient</subject><subject>Power management</subject><subject>Transistors</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQQIMoWKt3Dx4CntPmY5NNjrKtWmjpwYrgJexmZ9uU7ofJ9uC_d0t78DQMvDcDD6FHRieMUTPdzGcTTrmYCJ5qxeUVGjEpU2JUoq7RiFKmiRFa3KK7GPfDqpKEj9D3CurgY98Gsmhi5wOUeOa3vs8PeNluvcOZD-7o-4jzpsRZW3f5wLcN_vL9DhtKpkxT0tQ4W60_8AbcrmkPgwjxHt1U-SHCw2WO0efrfJO9k-X6bZG9LInjhvekANCaQlJyyGliuOQOhDIplUVppHKyNJrmTmuVMAVlURlBCyXKyrkUpBRijJ7Pd7vQ_hwh9nbfHkMzvLTcMJakUlM2UPRMudDGGKCyXfB1Hn4to_ZU0A4F7amgvRQclKez4gHgH84SoVIq_gACX2sK</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Nawaria, Megha</creator><creator>Kumar, Sanjay</creator><creator>Gautam, Mohit Kumar</creator><creator>Dhakad, Narendra Singh</creator><creator>Singh, Rohit</creator><creator>Singhal, Sonal</creator><creator>Kumar, Pawan</creator><creator>Vishvakarma, Santosh Kumar</creator><creator>Mukherjee, Shaibal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2968-172X</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid><orcidid>https://orcid.org/0000-0003-4223-0077</orcidid><orcidid>https://orcid.org/0000-0003-2848-1785</orcidid><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0009-0008-2327-9012</orcidid><orcidid>https://orcid.org/0000-0002-0789-337X</orcidid></search><sort><creationdate>20240101</creationdate><title>Memristor-Inspired Digital Logic Circuits and Comparison With 90-/180-nm CMOS Technologies</title><author>Nawaria, Megha ; Kumar, Sanjay ; Gautam, Mohit Kumar ; Dhakad, Narendra Singh ; Singh, Rohit ; Singhal, Sonal ; Kumar, Pawan ; Vishvakarma, Santosh Kumar ; Mukherjee, Shaibal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-bee880e4d2ea049252ce369705bd956c5d980ac886416edbf930b63dfcc7e5533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Circuit design</topic><topic>Circuits</topic><topic>CMOS</topic><topic>CMOS technology</topic><topic>Combinational logic circuits</topic><topic>complementary metal–oxide–semiconductor (CMOS)</topic><topic>Design</topic><topic>Design optimization</topic><topic>Digital electronics</topic><topic>Gates (circuits)</topic><topic>Integrated circuit modeling</topic><topic>Logic circuits</topic><topic>Logic gates</topic><topic>Mathematical models</topic><topic>memristor</topic><topic>Memristors</topic><topic>Performance enhancement</topic><topic>Performance evaluation</topic><topic>Power consumption</topic><topic>power efficient</topic><topic>Power management</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nawaria, Megha</creatorcontrib><creatorcontrib>Kumar, Sanjay</creatorcontrib><creatorcontrib>Gautam, Mohit Kumar</creatorcontrib><creatorcontrib>Dhakad, Narendra Singh</creatorcontrib><creatorcontrib>Singh, Rohit</creatorcontrib><creatorcontrib>Singhal, Sonal</creatorcontrib><creatorcontrib>Kumar, Pawan</creatorcontrib><creatorcontrib>Vishvakarma, Santosh Kumar</creatorcontrib><creatorcontrib>Mukherjee, Shaibal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nawaria, Megha</au><au>Kumar, Sanjay</au><au>Gautam, Mohit Kumar</au><au>Dhakad, Narendra Singh</au><au>Singh, Rohit</au><au>Singhal, Sonal</au><au>Kumar, Pawan</au><au>Vishvakarma, Santosh Kumar</au><au>Mukherjee, Shaibal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memristor-Inspired Digital Logic Circuits and Comparison With 90-/180-nm CMOS Technologies</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>71</volume><issue>1</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Compact low-power devices with ultrafast processing speed are the fundamental building blocks for the development of the state-of-the-art logic systems and memristor prominently fulfills these demands and plays a major role in digital circuit design. In this work, design, implementation, and performance evaluation of memristor-based logic gates, such as NOT, AND, NAND, OR, NOR, XOR, and XNOR, and combinational logic circuits, such as adder, subtractor, and 2 <inline-formula> <tex-math notation="LaTeX">\times</tex-math> </inline-formula> 1 mux, are presented via SPECTRE in Cadence Virtuoso. Herein, we propose an optimized design of memristor-based logic gates and combinational logic circuits and draw a comparative analysis with the conventional 180-nm complementary metal-oxide-semiconductor (CMOS) technology. The utilized memristor model is thoroughly validated with the experimental results of a high-density Y<inline-formula> <tex-math notation="LaTeX">_{\text{2}}</tex-math> </inline-formula>O<inline-formula> <tex-math notation="LaTeX">_{\text{3}}</tex-math> </inline-formula>-based memristive crossbar array (MCA), which shows a significantly low values of coefficient of variabilities in device-to-device (D2D) and cycle-to-cycle (C2C) operation. The area, power, and delay calculated from these combinational circuits are found to be reduced by more than 71.4%, 40%, and 54%, respectively, as compared to the conventional 180-nm CMOS technology. The impact of multiple CMOS technology nodes (90 and 180 nm) on the power consumption at the chip-level logic circuit implementation has also been investigated. The adopted memristor-based design significantly improves the performance of various logic designs, which makes it area and power efficient and enables a major breakthrough in designing various low-power, low-cost, ultrafast, and compact circuits.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2023.3278625</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-2968-172X</orcidid><orcidid>https://orcid.org/0000-0001-5382-2006</orcidid><orcidid>https://orcid.org/0000-0003-4223-0077</orcidid><orcidid>https://orcid.org/0000-0003-2848-1785</orcidid><orcidid>https://orcid.org/0000-0002-9879-7278</orcidid><orcidid>https://orcid.org/0009-0008-2327-9012</orcidid><orcidid>https://orcid.org/0000-0002-0789-337X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9383 |
ispartof | IEEE transactions on electron devices, 2024-01, Vol.71 (1), p.1-7 |
issn | 0018-9383 1557-9646 |
language | eng |
recordid | cdi_proquest_journals_2911475801 |
source | IEEE Electronic Library (IEL) |
subjects | Circuit design Circuits CMOS CMOS technology Combinational logic circuits complementary metal–oxide–semiconductor (CMOS) Design Design optimization Digital electronics Gates (circuits) Integrated circuit modeling Logic circuits Logic gates Mathematical models memristor Memristors Performance enhancement Performance evaluation Power consumption power efficient Power management Transistors |
title | Memristor-Inspired Digital Logic Circuits and Comparison With 90-/180-nm CMOS Technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A52%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memristor-Inspired%20Digital%20Logic%20Circuits%20and%20Comparison%20With%2090-/180-nm%20CMOS%20Technologies&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Nawaria,%20Megha&rft.date=2024-01-01&rft.volume=71&rft.issue=1&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2023.3278625&rft_dat=%3Cproquest_RIE%3E2911475801%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911475801&rft_id=info:pmid/&rft_ieee_id=10143670&rfr_iscdi=true |