Evolutional Codes: Novel Efficient Graph Data Representation for Mobile Edge Computing

To transmit big graph data emerging from prevalent social networks and biological networks over mobile devices has become challenging nowadays. Since graphs are usually represented by the associated adjacency matrices or graph data structures, dynamic node (vertex) re-ordering to reflect the nodes&#...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on network science and engineering 2024-01, Vol.11 (1), p.1387-1397
Hauptverfasser: Sun, Elaine Y.-N., Wu, Hsiao-Chun, Huang, Scott C.-H., Kuan, Yen-Cheng, Yung, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1397
container_issue 1
container_start_page 1387
container_title IEEE transactions on network science and engineering
container_volume 11
creator Sun, Elaine Y.-N.
Wu, Hsiao-Chun
Huang, Scott C.-H.
Kuan, Yen-Cheng
Yung, Chi
description To transmit big graph data emerging from prevalent social networks and biological networks over mobile devices has become challenging nowadays. Since graphs are usually represented by the associated adjacency matrices or graph data structures, dynamic node (vertex) re-ordering to reflect the nodes' real relations (for example, spatial or structural relations) is desirable in practice but impossible for these two existing graph-representation methods. Lately, we proposed a novel evolutional coding technique, which can restructure graph data dynamically, flexibly, and efficiently for transmission among mobile devices. Memory efficiency, in terms of number of memory storage units, is a crucial performance measure for mobile edge computing. To select the optimal graph-representation strategy for arbitrary graph data, we define a new graph-taxonomy metric dependent on the edge density (edges per node) in this work. According to our newly defined graph-taxonomy metric, one can choose the optimal graph-representation solution among the three aforementioned methods in terms of required memory-storage space for any application. Pertinent theorems and proofs for the underlying comparative studies on graph representation are presented in this article.
doi_str_mv 10.1109/TNSE.2023.3322584
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2911475766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10273432</ieee_id><sourcerecordid>2911475766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-7861a999822f0043f9faf701ed745367dc764e0d1f9bff0efeb7aacdffee51b83</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOHQ_QPAi4HVnvpo03smsU5gTdIp3IW1PZke31KQb-O9t2S68OofD875wHoSuKJlQSvTtcvGeTxhhfMI5Y2kmTtCIcS4SzvTX6bAzlQip1Tkax7gmhFCWSc75CH3me9_sutpvbYOnvoJ4hxd-Dw3OnavLGrYdngXbfuMH21n8Bm2A2B_tEMHOB_zii7oBnFcr6As2bV-2XV2iM2ebCOPjvEAfj_ly-pTMX2fP0_t5UjIhu0RlklqtdcaYI0Rwp511ilColEi5VFWppABSUacL5wg4KJS1ZeUcQEqLjF-gm0NvG_zPDmJn1n4X-l-iYZpSoVIlZU_RA1UGH2MAZ9pQb2z4NZSYwaAZDJrBoDka7DPXh0wNAP94prjgjP8BnIhtLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911475766</pqid></control><display><type>article</type><title>Evolutional Codes: Novel Efficient Graph Data Representation for Mobile Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Sun, Elaine Y.-N. ; Wu, Hsiao-Chun ; Huang, Scott C.-H. ; Kuan, Yen-Cheng ; Yung, Chi</creator><creatorcontrib>Sun, Elaine Y.-N. ; Wu, Hsiao-Chun ; Huang, Scott C.-H. ; Kuan, Yen-Cheng ; Yung, Chi</creatorcontrib><description>To transmit big graph data emerging from prevalent social networks and biological networks over mobile devices has become challenging nowadays. Since graphs are usually represented by the associated adjacency matrices or graph data structures, dynamic node (vertex) re-ordering to reflect the nodes' real relations (for example, spatial or structural relations) is desirable in practice but impossible for these two existing graph-representation methods. Lately, we proposed a novel evolutional coding technique, which can restructure graph data dynamically, flexibly, and efficiently for transmission among mobile devices. Memory efficiency, in terms of number of memory storage units, is a crucial performance measure for mobile edge computing. To select the optimal graph-representation strategy for arbitrary graph data, we define a new graph-taxonomy metric dependent on the edge density (edges per node) in this work. According to our newly defined graph-taxonomy metric, one can choose the optimal graph-representation solution among the three aforementioned methods in terms of required memory-storage space for any application. Pertinent theorems and proofs for the underlying comparative studies on graph representation are presented in this article.</description><identifier>ISSN: 2327-4697</identifier><identifier>EISSN: 2334-329X</identifier><identifier>DOI: 10.1109/TNSE.2023.3322584</identifier><identifier>CODEN: ITNSD5</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Codes ; Comparative studies ; Data structures ; Edge computing ; edge-density ; Electronic devices ; Encoding ; evolutional code ; Graph data ; Graph representations ; Graph theory ; Graphical representations ; Memory devices ; Memory management ; Mobile computing ; node re-ordering ; Social networks ; software-defined multiplexing code (SDMC) ; Sparse matrices ; Storage units ; Symbols ; Taxonomy</subject><ispartof>IEEE transactions on network science and engineering, 2024-01, Vol.11 (1), p.1387-1397</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-7861a999822f0043f9faf701ed745367dc764e0d1f9bff0efeb7aacdffee51b83</cites><orcidid>0000-0002-0178-1246 ; 0000-0002-9376-7141 ; 0000-0003-2250-2848 ; 0000-0001-9896-1325 ; 0000-0001-7026-4595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10273432$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10273432$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sun, Elaine Y.-N.</creatorcontrib><creatorcontrib>Wu, Hsiao-Chun</creatorcontrib><creatorcontrib>Huang, Scott C.-H.</creatorcontrib><creatorcontrib>Kuan, Yen-Cheng</creatorcontrib><creatorcontrib>Yung, Chi</creatorcontrib><title>Evolutional Codes: Novel Efficient Graph Data Representation for Mobile Edge Computing</title><title>IEEE transactions on network science and engineering</title><addtitle>TNSE</addtitle><description>To transmit big graph data emerging from prevalent social networks and biological networks over mobile devices has become challenging nowadays. Since graphs are usually represented by the associated adjacency matrices or graph data structures, dynamic node (vertex) re-ordering to reflect the nodes' real relations (for example, spatial or structural relations) is desirable in practice but impossible for these two existing graph-representation methods. Lately, we proposed a novel evolutional coding technique, which can restructure graph data dynamically, flexibly, and efficiently for transmission among mobile devices. Memory efficiency, in terms of number of memory storage units, is a crucial performance measure for mobile edge computing. To select the optimal graph-representation strategy for arbitrary graph data, we define a new graph-taxonomy metric dependent on the edge density (edges per node) in this work. According to our newly defined graph-taxonomy metric, one can choose the optimal graph-representation solution among the three aforementioned methods in terms of required memory-storage space for any application. Pertinent theorems and proofs for the underlying comparative studies on graph representation are presented in this article.</description><subject>Codes</subject><subject>Comparative studies</subject><subject>Data structures</subject><subject>Edge computing</subject><subject>edge-density</subject><subject>Electronic devices</subject><subject>Encoding</subject><subject>evolutional code</subject><subject>Graph data</subject><subject>Graph representations</subject><subject>Graph theory</subject><subject>Graphical representations</subject><subject>Memory devices</subject><subject>Memory management</subject><subject>Mobile computing</subject><subject>node re-ordering</subject><subject>Social networks</subject><subject>software-defined multiplexing code (SDMC)</subject><subject>Sparse matrices</subject><subject>Storage units</subject><subject>Symbols</subject><subject>Taxonomy</subject><issn>2327-4697</issn><issn>2334-329X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOHQ_QPAi4HVnvpo03smsU5gTdIp3IW1PZke31KQb-O9t2S68OofD875wHoSuKJlQSvTtcvGeTxhhfMI5Y2kmTtCIcS4SzvTX6bAzlQip1Tkax7gmhFCWSc75CH3me9_sutpvbYOnvoJ4hxd-Dw3OnavLGrYdngXbfuMH21n8Bm2A2B_tEMHOB_zii7oBnFcr6As2bV-2XV2iM2ebCOPjvEAfj_ly-pTMX2fP0_t5UjIhu0RlklqtdcaYI0Rwp511ilColEi5VFWppABSUacL5wg4KJS1ZeUcQEqLjF-gm0NvG_zPDmJn1n4X-l-iYZpSoVIlZU_RA1UGH2MAZ9pQb2z4NZSYwaAZDJrBoDka7DPXh0wNAP94prjgjP8BnIhtLg</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Sun, Elaine Y.-N.</creator><creator>Wu, Hsiao-Chun</creator><creator>Huang, Scott C.-H.</creator><creator>Kuan, Yen-Cheng</creator><creator>Yung, Chi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0178-1246</orcidid><orcidid>https://orcid.org/0000-0002-9376-7141</orcidid><orcidid>https://orcid.org/0000-0003-2250-2848</orcidid><orcidid>https://orcid.org/0000-0001-9896-1325</orcidid><orcidid>https://orcid.org/0000-0001-7026-4595</orcidid></search><sort><creationdate>202401</creationdate><title>Evolutional Codes: Novel Efficient Graph Data Representation for Mobile Edge Computing</title><author>Sun, Elaine Y.-N. ; Wu, Hsiao-Chun ; Huang, Scott C.-H. ; Kuan, Yen-Cheng ; Yung, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-7861a999822f0043f9faf701ed745367dc764e0d1f9bff0efeb7aacdffee51b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Codes</topic><topic>Comparative studies</topic><topic>Data structures</topic><topic>Edge computing</topic><topic>edge-density</topic><topic>Electronic devices</topic><topic>Encoding</topic><topic>evolutional code</topic><topic>Graph data</topic><topic>Graph representations</topic><topic>Graph theory</topic><topic>Graphical representations</topic><topic>Memory devices</topic><topic>Memory management</topic><topic>Mobile computing</topic><topic>node re-ordering</topic><topic>Social networks</topic><topic>software-defined multiplexing code (SDMC)</topic><topic>Sparse matrices</topic><topic>Storage units</topic><topic>Symbols</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Elaine Y.-N.</creatorcontrib><creatorcontrib>Wu, Hsiao-Chun</creatorcontrib><creatorcontrib>Huang, Scott C.-H.</creatorcontrib><creatorcontrib>Kuan, Yen-Cheng</creatorcontrib><creatorcontrib>Yung, Chi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on network science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sun, Elaine Y.-N.</au><au>Wu, Hsiao-Chun</au><au>Huang, Scott C.-H.</au><au>Kuan, Yen-Cheng</au><au>Yung, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutional Codes: Novel Efficient Graph Data Representation for Mobile Edge Computing</atitle><jtitle>IEEE transactions on network science and engineering</jtitle><stitle>TNSE</stitle><date>2024-01</date><risdate>2024</risdate><volume>11</volume><issue>1</issue><spage>1387</spage><epage>1397</epage><pages>1387-1397</pages><issn>2327-4697</issn><eissn>2334-329X</eissn><coden>ITNSD5</coden><abstract>To transmit big graph data emerging from prevalent social networks and biological networks over mobile devices has become challenging nowadays. Since graphs are usually represented by the associated adjacency matrices or graph data structures, dynamic node (vertex) re-ordering to reflect the nodes' real relations (for example, spatial or structural relations) is desirable in practice but impossible for these two existing graph-representation methods. Lately, we proposed a novel evolutional coding technique, which can restructure graph data dynamically, flexibly, and efficiently for transmission among mobile devices. Memory efficiency, in terms of number of memory storage units, is a crucial performance measure for mobile edge computing. To select the optimal graph-representation strategy for arbitrary graph data, we define a new graph-taxonomy metric dependent on the edge density (edges per node) in this work. According to our newly defined graph-taxonomy metric, one can choose the optimal graph-representation solution among the three aforementioned methods in terms of required memory-storage space for any application. Pertinent theorems and proofs for the underlying comparative studies on graph representation are presented in this article.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TNSE.2023.3322584</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0178-1246</orcidid><orcidid>https://orcid.org/0000-0002-9376-7141</orcidid><orcidid>https://orcid.org/0000-0003-2250-2848</orcidid><orcidid>https://orcid.org/0000-0001-9896-1325</orcidid><orcidid>https://orcid.org/0000-0001-7026-4595</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4697
ispartof IEEE transactions on network science and engineering, 2024-01, Vol.11 (1), p.1387-1397
issn 2327-4697
2334-329X
language eng
recordid cdi_proquest_journals_2911475766
source IEEE Electronic Library (IEL)
subjects Codes
Comparative studies
Data structures
Edge computing
edge-density
Electronic devices
Encoding
evolutional code
Graph data
Graph representations
Graph theory
Graphical representations
Memory devices
Memory management
Mobile computing
node re-ordering
Social networks
software-defined multiplexing code (SDMC)
Sparse matrices
Storage units
Symbols
Taxonomy
title Evolutional Codes: Novel Efficient Graph Data Representation for Mobile Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T20%3A22%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutional%20Codes:%20Novel%20Efficient%20Graph%20Data%20Representation%20for%20Mobile%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20network%20science%20and%20engineering&rft.au=Sun,%20Elaine%20Y.-N.&rft.date=2024-01&rft.volume=11&rft.issue=1&rft.spage=1387&rft.epage=1397&rft.pages=1387-1397&rft.issn=2327-4697&rft.eissn=2334-329X&rft.coden=ITNSD5&rft_id=info:doi/10.1109/TNSE.2023.3322584&rft_dat=%3Cproquest_RIE%3E2911475766%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911475766&rft_id=info:pmid/&rft_ieee_id=10273432&rfr_iscdi=true