Modeling Identity Disclosure Risk Estimation Using Kenyan Situation
Identity disclosure risk is an essential consideration in data anonymization aimed at preserving privacy and utility. The risk is regionally dependent. Therefore, there is a need for a regional empirical approach in addition to a theoretical approach in modeling disclosure risk estimation. Reviewed...
Gespeichert in:
Veröffentlicht in: | The African journal of information systems 2023-11, Vol.15 (4), p.222 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 222 |
container_title | The African journal of information systems |
container_volume | 15 |
creator | Muturi, Peter N Kahonge, Andrew M Chepken, Christopher K Miriti, Evans K |
description | Identity disclosure risk is an essential consideration in data anonymization aimed at preserving privacy and utility. The risk is regionally dependent. Therefore, there is a need for a regional empirical approach in addition to a theoretical approach in modeling disclosure risk estimation. Reviewed literature pointed to three influencers of the risk. However, we did not find literature on the combined effects of the three influencers and their predictive power. To fill the gap, this study modeled the risk estimation predicated on the combined effect of the three predictors using the Kenyan situation. The study validated the model by conducting an actual re-identification quasi-experiment. The adversary's analytical competence, distinguishing power of the anonymized datasets, and linkage mapping of the identified datasets are presented as the predictors of the risk estimation. For each predictor, manifest variables are presented. Our presented model extends previous models and is capable of producing a realistic risk estimation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2911360988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911360988</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-754816b2bc0a5015e601e9da403db8e8dbbcb987e4c8f5f7070e2a6204c596b3</originalsourceid><addsrcrecordid>eNotjUtLAzEYRYMgWGr_Q8D1QN6TLGWsWmwRtK5LHt9I6pjUSWbRf-_4uJsLl8M9F2hBDVcNYZpdoVUpRzKHG8OYWKBulwMMMb3jTYBUYz3ju1j8kMs0An6J5QOvS42ftsac8Fv5IZ8gnW3Cr7FOv_M1uuztUGD130u0v1_vu8dm-_yw6W63zYlSXptWCk2VY84TKwmVoAgFE6wgPDgNOjjnndEtCK972bekJcCsYkR4aZTjS3Tzd3sa89cEpR6OeRrTbDwwMxsUMVrzb49ARg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911360988</pqid></control><display><type>article</type><title>Modeling Identity Disclosure Risk Estimation Using Kenyan Situation</title><source>DOAJ Directory of Open Access Journals</source><source>EBSCOhost Business Source Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Muturi, Peter N ; Kahonge, Andrew M ; Chepken, Christopher K ; Miriti, Evans K</creator><creatorcontrib>Muturi, Peter N ; Kahonge, Andrew M ; Chepken, Christopher K ; Miriti, Evans K</creatorcontrib><description>Identity disclosure risk is an essential consideration in data anonymization aimed at preserving privacy and utility. The risk is regionally dependent. Therefore, there is a need for a regional empirical approach in addition to a theoretical approach in modeling disclosure risk estimation. Reviewed literature pointed to three influencers of the risk. However, we did not find literature on the combined effects of the three influencers and their predictive power. To fill the gap, this study modeled the risk estimation predicated on the combined effect of the three predictors using the Kenyan situation. The study validated the model by conducting an actual re-identification quasi-experiment. The adversary's analytical competence, distinguishing power of the anonymized datasets, and linkage mapping of the identified datasets are presented as the predictors of the risk estimation. For each predictor, manifest variables are presented. Our presented model extends previous models and is capable of producing a realistic risk estimation.</description><identifier>EISSN: 1936-0282</identifier><language>eng</language><publisher>Baton Rouge: Kennesaw State University</publisher><subject>Identity ; Mapping ; Power ; Privacy</subject><ispartof>The African journal of information systems, 2023-11, Vol.15 (4), p.222</ispartof><rights>Copyright Kennesaw State University 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Muturi, Peter N</creatorcontrib><creatorcontrib>Kahonge, Andrew M</creatorcontrib><creatorcontrib>Chepken, Christopher K</creatorcontrib><creatorcontrib>Miriti, Evans K</creatorcontrib><title>Modeling Identity Disclosure Risk Estimation Using Kenyan Situation</title><title>The African journal of information systems</title><description>Identity disclosure risk is an essential consideration in data anonymization aimed at preserving privacy and utility. The risk is regionally dependent. Therefore, there is a need for a regional empirical approach in addition to a theoretical approach in modeling disclosure risk estimation. Reviewed literature pointed to three influencers of the risk. However, we did not find literature on the combined effects of the three influencers and their predictive power. To fill the gap, this study modeled the risk estimation predicated on the combined effect of the three predictors using the Kenyan situation. The study validated the model by conducting an actual re-identification quasi-experiment. The adversary's analytical competence, distinguishing power of the anonymized datasets, and linkage mapping of the identified datasets are presented as the predictors of the risk estimation. For each predictor, manifest variables are presented. Our presented model extends previous models and is capable of producing a realistic risk estimation.</description><subject>Identity</subject><subject>Mapping</subject><subject>Power</subject><subject>Privacy</subject><issn>1936-0282</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotjUtLAzEYRYMgWGr_Q8D1QN6TLGWsWmwRtK5LHt9I6pjUSWbRf-_4uJsLl8M9F2hBDVcNYZpdoVUpRzKHG8OYWKBulwMMMb3jTYBUYz3ju1j8kMs0An6J5QOvS42ftsac8Fv5IZ8gnW3Cr7FOv_M1uuztUGD130u0v1_vu8dm-_yw6W63zYlSXptWCk2VY84TKwmVoAgFE6wgPDgNOjjnndEtCK972bekJcCsYkR4aZTjS3Tzd3sa89cEpR6OeRrTbDwwMxsUMVrzb49ARg4</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Muturi, Peter N</creator><creator>Kahonge, Andrew M</creator><creator>Chepken, Christopher K</creator><creator>Miriti, Evans K</creator><general>Kennesaw State University</general><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20231101</creationdate><title>Modeling Identity Disclosure Risk Estimation Using Kenyan Situation</title><author>Muturi, Peter N ; Kahonge, Andrew M ; Chepken, Christopher K ; Miriti, Evans K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-754816b2bc0a5015e601e9da403db8e8dbbcb987e4c8f5f7070e2a6204c596b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Identity</topic><topic>Mapping</topic><topic>Power</topic><topic>Privacy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muturi, Peter N</creatorcontrib><creatorcontrib>Kahonge, Andrew M</creatorcontrib><creatorcontrib>Chepken, Christopher K</creatorcontrib><creatorcontrib>Miriti, Evans K</creatorcontrib><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The African journal of information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muturi, Peter N</au><au>Kahonge, Andrew M</au><au>Chepken, Christopher K</au><au>Miriti, Evans K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Identity Disclosure Risk Estimation Using Kenyan Situation</atitle><jtitle>The African journal of information systems</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>15</volume><issue>4</issue><spage>222</spage><pages>222-</pages><eissn>1936-0282</eissn><abstract>Identity disclosure risk is an essential consideration in data anonymization aimed at preserving privacy and utility. The risk is regionally dependent. Therefore, there is a need for a regional empirical approach in addition to a theoretical approach in modeling disclosure risk estimation. Reviewed literature pointed to three influencers of the risk. However, we did not find literature on the combined effects of the three influencers and their predictive power. To fill the gap, this study modeled the risk estimation predicated on the combined effect of the three predictors using the Kenyan situation. The study validated the model by conducting an actual re-identification quasi-experiment. The adversary's analytical competence, distinguishing power of the anonymized datasets, and linkage mapping of the identified datasets are presented as the predictors of the risk estimation. For each predictor, manifest variables are presented. Our presented model extends previous models and is capable of producing a realistic risk estimation.</abstract><cop>Baton Rouge</cop><pub>Kennesaw State University</pub></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1936-0282 |
ispartof | The African journal of information systems, 2023-11, Vol.15 (4), p.222 |
issn | 1936-0282 |
language | eng |
recordid | cdi_proquest_journals_2911360988 |
source | DOAJ Directory of Open Access Journals; EBSCOhost Business Source Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Identity Mapping Power Privacy |
title | Modeling Identity Disclosure Risk Estimation Using Kenyan Situation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A23%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Identity%20Disclosure%20Risk%20Estimation%20Using%20Kenyan%20Situation&rft.jtitle=The%20African%20journal%20of%20information%20systems&rft.au=Muturi,%20Peter%20N&rft.date=2023-11-01&rft.volume=15&rft.issue=4&rft.spage=222&rft.pages=222-&rft.eissn=1936-0282&rft_id=info:doi/&rft_dat=%3Cproquest%3E2911360988%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911360988&rft_id=info:pmid/&rfr_iscdi=true |