A random‐effect gamma process model with random initial degradation for accelerated destructive degradation testing data
An accelerated degradation test (ADT) hastens degradation mechanisms of products by loading higher stresses than normal use conditions to shorten testing time. In some situations, degradation levels during ADT can be measured only by destructive inspection where testing units must be destroyed or ph...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2024-02, Vol.40 (1), p.374-387 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 387 |
---|---|
container_issue | 1 |
container_start_page | 374 |
container_title | Quality and reliability engineering international |
container_volume | 40 |
creator | Ling, Man Ho Bae, Suk Joo |
description | An accelerated degradation test (ADT) hastens degradation mechanisms of products by loading higher stresses than normal use conditions to shorten testing time. In some situations, degradation levels during ADT can be measured only by destructive inspection where testing units must be destroyed or physical characteristics are significantly changed after measuring the performance degradation. For such an accelerated destructive degradation test (ADDT), initial degradation levels may vary from item to item. In this regard, we propose a random‐effect gamma process model with random initial degradation for the reliability analysis of ADDT data. Under the proposed modeling framework, we derive the maximum likelihood estimates (MLEs) of the model parameters and construct an inferential procedure for the parameters and reliability measures of interest, using asymptotic properties of the MLEs. In particular, the mean and the variance of the mean‐time‐to‐failure of the products from the ADDT data are explicitly derived in closed forms. Monte Carlo simulations under various scenarios are performed to validate the performance of proposed maximum likelihood estimation and inferential methods for the ADDT data. Finally, reliability estimation at a normal use condition and inferential procedures are illustrated through an ADDT example of return‐springs in a bi‐functional DC motor system of an automobile. |
doi_str_mv | 10.1002/qre.3417 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911274250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911274250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2887-176c75d91c56e2ba09aa72cfd3895d0cedc8209b5fcd599bc369eaddbfea9d673</originalsourceid><addsrcrecordid>eNp10MtKAzEUBuAgCtYq-AgBN26mJpnOJFmWUi9QEEXXIU1Oaspc2kxqqSsfwWf0SUxtNy5chSQf5_IjdEnJgBLCblYBBvmQ8iPUo0TKjJa5OEY9wociE4TyU3TWdQtCEpaihz5GOOjGtvX35xc4Bybiua5rjZehNdB1uG4tVHjj49sBYt_46HWFLcyDtjr6tsGuDVgbAxUEHcGmvy6GtYn-Hf64mN59M8fpqs_RidNVBxeHs49ebycv4_ts-nj3MB5NM8OE4BnlpeGFldQUJbCZJlJrzoyzuZCFJQasEYzIWeGMLaScmbyUoK2dOdDSljzvo6t93bTSap0GUIt2HZrUUjFJKeNDVpCkrvfKhLbrAji1DL7WYasoUbtkVUpW7ZJNNNvTja9g-69TT8-TX_8D0yd-Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911274250</pqid></control><display><type>article</type><title>A random‐effect gamma process model with random initial degradation for accelerated destructive degradation testing data</title><source>Access via Wiley Online Library</source><creator>Ling, Man Ho ; Bae, Suk Joo</creator><creatorcontrib>Ling, Man Ho ; Bae, Suk Joo</creatorcontrib><description>An accelerated degradation test (ADT) hastens degradation mechanisms of products by loading higher stresses than normal use conditions to shorten testing time. In some situations, degradation levels during ADT can be measured only by destructive inspection where testing units must be destroyed or physical characteristics are significantly changed after measuring the performance degradation. For such an accelerated destructive degradation test (ADDT), initial degradation levels may vary from item to item. In this regard, we propose a random‐effect gamma process model with random initial degradation for the reliability analysis of ADDT data. Under the proposed modeling framework, we derive the maximum likelihood estimates (MLEs) of the model parameters and construct an inferential procedure for the parameters and reliability measures of interest, using asymptotic properties of the MLEs. In particular, the mean and the variance of the mean‐time‐to‐failure of the products from the ADDT data are explicitly derived in closed forms. Monte Carlo simulations under various scenarios are performed to validate the performance of proposed maximum likelihood estimation and inferential methods for the ADDT data. Finally, reliability estimation at a normal use condition and inferential procedures are illustrated through an ADDT example of return‐springs in a bi‐functional DC motor system of an automobile.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.3417</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accelerated tests ; Asymptotic methods ; Asymptotic properties ; condition‐based maintenance ; D C motors ; DC motors ; Electric motors ; gamma process ; Mathematical models ; Maximum likelihood estimates ; Maximum likelihood estimation ; Monte Carlo simulation ; Parameters ; Performance degradation ; Physical properties ; random‐effect ; reliability ; Reliability analysis ; Testing time</subject><ispartof>Quality and reliability engineering international, 2024-02, Vol.40 (1), p.374-387</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2887-176c75d91c56e2ba09aa72cfd3895d0cedc8209b5fcd599bc369eaddbfea9d673</cites><orcidid>0000-0002-9938-7406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.3417$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.3417$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ling, Man Ho</creatorcontrib><creatorcontrib>Bae, Suk Joo</creatorcontrib><title>A random‐effect gamma process model with random initial degradation for accelerated destructive degradation testing data</title><title>Quality and reliability engineering international</title><description>An accelerated degradation test (ADT) hastens degradation mechanisms of products by loading higher stresses than normal use conditions to shorten testing time. In some situations, degradation levels during ADT can be measured only by destructive inspection where testing units must be destroyed or physical characteristics are significantly changed after measuring the performance degradation. For such an accelerated destructive degradation test (ADDT), initial degradation levels may vary from item to item. In this regard, we propose a random‐effect gamma process model with random initial degradation for the reliability analysis of ADDT data. Under the proposed modeling framework, we derive the maximum likelihood estimates (MLEs) of the model parameters and construct an inferential procedure for the parameters and reliability measures of interest, using asymptotic properties of the MLEs. In particular, the mean and the variance of the mean‐time‐to‐failure of the products from the ADDT data are explicitly derived in closed forms. Monte Carlo simulations under various scenarios are performed to validate the performance of proposed maximum likelihood estimation and inferential methods for the ADDT data. Finally, reliability estimation at a normal use condition and inferential procedures are illustrated through an ADDT example of return‐springs in a bi‐functional DC motor system of an automobile.</description><subject>Accelerated tests</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>condition‐based maintenance</subject><subject>D C motors</subject><subject>DC motors</subject><subject>Electric motors</subject><subject>gamma process</subject><subject>Mathematical models</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood estimation</subject><subject>Monte Carlo simulation</subject><subject>Parameters</subject><subject>Performance degradation</subject><subject>Physical properties</subject><subject>random‐effect</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Testing time</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKAzEUBuAgCtYq-AgBN26mJpnOJFmWUi9QEEXXIU1Oaspc2kxqqSsfwWf0SUxtNy5chSQf5_IjdEnJgBLCblYBBvmQ8iPUo0TKjJa5OEY9wociE4TyU3TWdQtCEpaihz5GOOjGtvX35xc4Bybiua5rjZehNdB1uG4tVHjj49sBYt_46HWFLcyDtjr6tsGuDVgbAxUEHcGmvy6GtYn-Hf64mN59M8fpqs_RidNVBxeHs49ebycv4_ts-nj3MB5NM8OE4BnlpeGFldQUJbCZJlJrzoyzuZCFJQasEYzIWeGMLaScmbyUoK2dOdDSljzvo6t93bTSap0GUIt2HZrUUjFJKeNDVpCkrvfKhLbrAji1DL7WYasoUbtkVUpW7ZJNNNvTja9g-69TT8-TX_8D0yd-Vg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Ling, Man Ho</creator><creator>Bae, Suk Joo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-9938-7406</orcidid></search><sort><creationdate>202402</creationdate><title>A random‐effect gamma process model with random initial degradation for accelerated destructive degradation testing data</title><author>Ling, Man Ho ; Bae, Suk Joo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2887-176c75d91c56e2ba09aa72cfd3895d0cedc8209b5fcd599bc369eaddbfea9d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accelerated tests</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>condition‐based maintenance</topic><topic>D C motors</topic><topic>DC motors</topic><topic>Electric motors</topic><topic>gamma process</topic><topic>Mathematical models</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood estimation</topic><topic>Monte Carlo simulation</topic><topic>Parameters</topic><topic>Performance degradation</topic><topic>Physical properties</topic><topic>random‐effect</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Testing time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ling, Man Ho</creatorcontrib><creatorcontrib>Bae, Suk Joo</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ling, Man Ho</au><au>Bae, Suk Joo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A random‐effect gamma process model with random initial degradation for accelerated destructive degradation testing data</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2024-02</date><risdate>2024</risdate><volume>40</volume><issue>1</issue><spage>374</spage><epage>387</epage><pages>374-387</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>An accelerated degradation test (ADT) hastens degradation mechanisms of products by loading higher stresses than normal use conditions to shorten testing time. In some situations, degradation levels during ADT can be measured only by destructive inspection where testing units must be destroyed or physical characteristics are significantly changed after measuring the performance degradation. For such an accelerated destructive degradation test (ADDT), initial degradation levels may vary from item to item. In this regard, we propose a random‐effect gamma process model with random initial degradation for the reliability analysis of ADDT data. Under the proposed modeling framework, we derive the maximum likelihood estimates (MLEs) of the model parameters and construct an inferential procedure for the parameters and reliability measures of interest, using asymptotic properties of the MLEs. In particular, the mean and the variance of the mean‐time‐to‐failure of the products from the ADDT data are explicitly derived in closed forms. Monte Carlo simulations under various scenarios are performed to validate the performance of proposed maximum likelihood estimation and inferential methods for the ADDT data. Finally, reliability estimation at a normal use condition and inferential procedures are illustrated through an ADDT example of return‐springs in a bi‐functional DC motor system of an automobile.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.3417</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9938-7406</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2024-02, Vol.40 (1), p.374-387 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2911274250 |
source | Access via Wiley Online Library |
subjects | Accelerated tests Asymptotic methods Asymptotic properties condition‐based maintenance D C motors DC motors Electric motors gamma process Mathematical models Maximum likelihood estimates Maximum likelihood estimation Monte Carlo simulation Parameters Performance degradation Physical properties random‐effect reliability Reliability analysis Testing time |
title | A random‐effect gamma process model with random initial degradation for accelerated destructive degradation testing data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A11%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20random%E2%80%90effect%20gamma%20process%20model%20with%20random%20initial%20degradation%20for%20accelerated%20destructive%20degradation%20testing%20data&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Ling,%20Man%20Ho&rft.date=2024-02&rft.volume=40&rft.issue=1&rft.spage=374&rft.epage=387&rft.pages=374-387&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.3417&rft_dat=%3Cproquest_cross%3E2911274250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911274250&rft_id=info:pmid/&rfr_iscdi=true |