Discrete Weierstrass Transform: Generalisations

The classical Weierstrass transform is an isometric operator mapping elements of the weighted L 2 - space L 2 ( R , exp ( - x 2 / 2 ) ) to the Fock space. We defined an analogue version of this transform in discrete Hermitian Clifford analysis in one dimension, where functions are defined on a discr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2024-02, Vol.18 (2), Article 20
Hauptverfasser: Massé, A., De Ridder, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Complex analysis and operator theory
container_volume 18
creator Massé, A.
De Ridder, H.
description The classical Weierstrass transform is an isometric operator mapping elements of the weighted L 2 - space L 2 ( R , exp ( - x 2 / 2 ) ) to the Fock space. We defined an analogue version of this transform in discrete Hermitian Clifford analysis in one dimension, where functions are defined on a discrete line rather than the continuous space. This transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. The aim of this paper is to extend the definition to higher dimensions, where we must take into account the anticommutativity of the basic Clifford elements and use the generalised discrete Hermite polynomials. Furthermore, we investigate, back in dimension 1, the asymptotic behaviour if the mesh width approaches 0.
doi_str_mv 10.1007/s11785-023-01464-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911133514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911133514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-6f84101dc961fa0b4ef1ef5d75731ec26c329ddd2d3cdad0e8f1b57354db3fcb3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKeC57U7-5XEm1StQsFLxeOy2Z2VlDapO-nBf280ojdPMzDP-w48jF2CuAYhijkBFKXhQiouQFvN1RGbgLXAS2nl8e9u9Ck7I9oIYUVRVRM2v2soZOxx9ooNZuqzJ5qts28pdXl3M1tii9lvG_J907V0zk6S3xJe_Mwpe3m4Xy8e-ep5-bS4XfEgC9Fzm0oNAmKoLCQvao0JMJlYmEIBBmmDklWMUUYVoo8CywT1cDM61iqFWk3Z1di7z937Aal3m-6Q2-GlkxUAKGVAD5QcqZA7oozJ7XOz8_nDgXBfYtwoxg1i3LcYp4aQGkM0wO0b5r_qf1KfpXNmLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911133514</pqid></control><display><type>article</type><title>Discrete Weierstrass Transform: Generalisations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Massé, A. ; De Ridder, H.</creator><creatorcontrib>Massé, A. ; De Ridder, H.</creatorcontrib><description>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L 2 - space L 2 ( R , exp ( - x 2 / 2 ) ) to the Fock space. We defined an analogue version of this transform in discrete Hermitian Clifford analysis in one dimension, where functions are defined on a discrete line rather than the continuous space. This transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. The aim of this paper is to extend the definition to higher dimensions, where we must take into account the anticommutativity of the basic Clifford elements and use the generalised discrete Hermite polynomials. Furthermore, we investigate, back in dimension 1, the asymptotic behaviour if the mesh width approaches 0.</description><identifier>ISSN: 1661-8254</identifier><identifier>EISSN: 1661-8262</identifier><identifier>DOI: 10.1007/s11785-023-01464-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Asymptotic properties ; Hermite polynomials ; Higher Dimensional Geometric Function Theory and Hypercomplex Analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Operators (mathematics)</subject><ispartof>Complex analysis and operator theory, 2024-02, Vol.18 (2), Article 20</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-6f84101dc961fa0b4ef1ef5d75731ec26c329ddd2d3cdad0e8f1b57354db3fcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11785-023-01464-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11785-023-01464-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Massé, A.</creatorcontrib><creatorcontrib>De Ridder, H.</creatorcontrib><title>Discrete Weierstrass Transform: Generalisations</title><title>Complex analysis and operator theory</title><addtitle>Complex Anal. Oper. Theory</addtitle><description>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L 2 - space L 2 ( R , exp ( - x 2 / 2 ) ) to the Fock space. We defined an analogue version of this transform in discrete Hermitian Clifford analysis in one dimension, where functions are defined on a discrete line rather than the continuous space. This transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. The aim of this paper is to extend the definition to higher dimensions, where we must take into account the anticommutativity of the basic Clifford elements and use the generalised discrete Hermite polynomials. Furthermore, we investigate, back in dimension 1, the asymptotic behaviour if the mesh width approaches 0.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Hermite polynomials</subject><subject>Higher Dimensional Geometric Function Theory and Hypercomplex Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Operators (mathematics)</subject><issn>1661-8254</issn><issn>1661-8262</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKeC57U7-5XEm1StQsFLxeOy2Z2VlDapO-nBf280ojdPMzDP-w48jF2CuAYhijkBFKXhQiouQFvN1RGbgLXAS2nl8e9u9Ck7I9oIYUVRVRM2v2soZOxx9ooNZuqzJ5qts28pdXl3M1tii9lvG_J907V0zk6S3xJe_Mwpe3m4Xy8e-ep5-bS4XfEgC9Fzm0oNAmKoLCQvao0JMJlYmEIBBmmDklWMUUYVoo8CywT1cDM61iqFWk3Z1di7z937Aal3m-6Q2-GlkxUAKGVAD5QcqZA7oozJ7XOz8_nDgXBfYtwoxg1i3LcYp4aQGkM0wO0b5r_qf1KfpXNmLQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Massé, A.</creator><creator>De Ridder, H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Discrete Weierstrass Transform: Generalisations</title><author>Massé, A. ; De Ridder, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-6f84101dc961fa0b4ef1ef5d75731ec26c329ddd2d3cdad0e8f1b57354db3fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Hermite polynomials</topic><topic>Higher Dimensional Geometric Function Theory and Hypercomplex Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Massé, A.</creatorcontrib><creatorcontrib>De Ridder, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Complex analysis and operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Massé, A.</au><au>De Ridder, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete Weierstrass Transform: Generalisations</atitle><jtitle>Complex analysis and operator theory</jtitle><stitle>Complex Anal. Oper. Theory</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>18</volume><issue>2</issue><artnum>20</artnum><issn>1661-8254</issn><eissn>1661-8262</eissn><abstract>The classical Weierstrass transform is an isometric operator mapping elements of the weighted L 2 - space L 2 ( R , exp ( - x 2 / 2 ) ) to the Fock space. We defined an analogue version of this transform in discrete Hermitian Clifford analysis in one dimension, where functions are defined on a discrete line rather than the continuous space. This transform is based on the classical definition, in combination with a discrete version of the Gaussian function and discrete counterparts of the classical Hermite polynomials. The aim of this paper is to extend the definition to higher dimensions, where we must take into account the anticommutativity of the basic Clifford elements and use the generalised discrete Hermite polynomials. Furthermore, we investigate, back in dimension 1, the asymptotic behaviour if the mesh width approaches 0.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11785-023-01464-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 1661-8254
ispartof Complex analysis and operator theory, 2024-02, Vol.18 (2), Article 20
issn 1661-8254
1661-8262
language eng
recordid cdi_proquest_journals_2911133514
source SpringerLink Journals - AutoHoldings
subjects Analysis
Asymptotic properties
Hermite polynomials
Higher Dimensional Geometric Function Theory and Hypercomplex Analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Operator Theory
Operators (mathematics)
title Discrete Weierstrass Transform: Generalisations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20Weierstrass%20Transform:%20Generalisations&rft.jtitle=Complex%20analysis%20and%20operator%20theory&rft.au=Mass%C3%A9,%20A.&rft.date=2024-02-01&rft.volume=18&rft.issue=2&rft.artnum=20&rft.issn=1661-8254&rft.eissn=1661-8262&rft_id=info:doi/10.1007/s11785-023-01464-3&rft_dat=%3Cproquest_cross%3E2911133514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911133514&rft_id=info:pmid/&rfr_iscdi=true