Differential privacy optimal control with asymmetric information structure

A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optimal control applications & methods 2024-01, Vol.45 (1), p.393-412
Hauptverfasser: Zhang, Di, Ni, Yuan‐Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 412
container_issue 1
container_start_page 393
container_title Optimal control applications & methods
container_volume 45
creator Zhang, Di
Ni, Yuan‐Hua
description A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results. A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked.
doi_str_mv 10.1002/oca.3062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911028356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911028356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3422-77fe6c1ad385413495ab65f6d73ed97f7fc1554833b18c3d394c4dec62d2a0963</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmsnHZnMs9ZtCL3oOaTbBlN1NTbLK_nu31qunYeDhHeZF6BrwAjAmd8HoBcUVOUEzwFKWwIGdohkGRkuCa3GOLlLaYYwFUDJDr_feORttn71ui330X9qMRdhn3027CX2OoS2-ff4odBq7zuboTeF7F2Knsw99kXIcTB6ivURnTrfJXv3NOXp_fHhbPZfrzdPLarkuDWWElEI4WxnQDa05A8ok19uKu6oR1DZSOOEMcM5qSrdQG9pQyQxrrKlIQzSWFZ2jm2PuPobPwaasdmGI_XRSEQmASU35Qd0elYkhpWidmp7rdBwVYHVoSk1NqUNTEy2P9Nu3dvzXqc1q-et_APCTajk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911028356</pqid></control><display><type>article</type><title>Differential privacy optimal control with asymmetric information structure</title><source>Wiley Online Library All Journals</source><creator>Zhang, Di ; Ni, Yuan‐Hua</creator><creatorcontrib>Zhang, Di ; Ni, Yuan‐Hua</creatorcontrib><description>A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results. A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.3062</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>asymmetric information ; Asymmetry ; Controllers ; decentralized control ; Design parameters ; differential privacy ; Kalman filters ; linear‐quadratic optimal control ; Optimal control ; Parameter sensitivity ; Performance degradation ; Privacy ; Random noise</subject><ispartof>Optimal control applications &amp; methods, 2024-01, Vol.45 (1), p.393-412</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3422-77fe6c1ad385413495ab65f6d73ed97f7fc1554833b18c3d394c4dec62d2a0963</cites><orcidid>0000-0003-3984-3120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.3062$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.3062$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Ni, Yuan‐Hua</creatorcontrib><title>Differential privacy optimal control with asymmetric information structure</title><title>Optimal control applications &amp; methods</title><description>A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results. A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked.</description><subject>asymmetric information</subject><subject>Asymmetry</subject><subject>Controllers</subject><subject>decentralized control</subject><subject>Design parameters</subject><subject>differential privacy</subject><subject>Kalman filters</subject><subject>linear‐quadratic optimal control</subject><subject>Optimal control</subject><subject>Parameter sensitivity</subject><subject>Performance degradation</subject><subject>Privacy</subject><subject>Random noise</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmsnHZnMs9ZtCL3oOaTbBlN1NTbLK_nu31qunYeDhHeZF6BrwAjAmd8HoBcUVOUEzwFKWwIGdohkGRkuCa3GOLlLaYYwFUDJDr_feORttn71ui330X9qMRdhn3027CX2OoS2-ff4odBq7zuboTeF7F2Knsw99kXIcTB6ivURnTrfJXv3NOXp_fHhbPZfrzdPLarkuDWWElEI4WxnQDa05A8ok19uKu6oR1DZSOOEMcM5qSrdQG9pQyQxrrKlIQzSWFZ2jm2PuPobPwaasdmGI_XRSEQmASU35Qd0elYkhpWidmp7rdBwVYHVoSk1NqUNTEy2P9Nu3dvzXqc1q-et_APCTajk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Zhang, Di</creator><creator>Ni, Yuan‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3984-3120</orcidid></search><sort><creationdate>202401</creationdate><title>Differential privacy optimal control with asymmetric information structure</title><author>Zhang, Di ; Ni, Yuan‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3422-77fe6c1ad385413495ab65f6d73ed97f7fc1554833b18c3d394c4dec62d2a0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymmetric information</topic><topic>Asymmetry</topic><topic>Controllers</topic><topic>decentralized control</topic><topic>Design parameters</topic><topic>differential privacy</topic><topic>Kalman filters</topic><topic>linear‐quadratic optimal control</topic><topic>Optimal control</topic><topic>Parameter sensitivity</topic><topic>Performance degradation</topic><topic>Privacy</topic><topic>Random noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Ni, Yuan‐Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications &amp; methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Di</au><au>Ni, Yuan‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential privacy optimal control with asymmetric information structure</atitle><jtitle>Optimal control applications &amp; methods</jtitle><date>2024-01</date><risdate>2024</risdate><volume>45</volume><issue>1</issue><spage>393</spage><epage>412</epage><pages>393-412</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results. A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.3062</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3984-3120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0143-2087
ispartof Optimal control applications & methods, 2024-01, Vol.45 (1), p.393-412
issn 0143-2087
1099-1514
language eng
recordid cdi_proquest_journals_2911028356
source Wiley Online Library All Journals
subjects asymmetric information
Asymmetry
Controllers
decentralized control
Design parameters
differential privacy
Kalman filters
linear‐quadratic optimal control
Optimal control
Parameter sensitivity
Performance degradation
Privacy
Random noise
title Differential privacy optimal control with asymmetric information structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20privacy%20optimal%20control%20with%20asymmetric%20information%20structure&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Zhang,%20Di&rft.date=2024-01&rft.volume=45&rft.issue=1&rft.spage=393&rft.epage=412&rft.pages=393-412&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.3062&rft_dat=%3Cproquest_cross%3E2911028356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911028356&rft_id=info:pmid/&rfr_iscdi=true