Differential privacy optimal control with asymmetric information structure
A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note th...
Gespeichert in:
Veröffentlicht in: | Optimal control applications & methods 2024-01, Vol.45 (1), p.393-412 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 412 |
---|---|
container_issue | 1 |
container_start_page | 393 |
container_title | Optimal control applications & methods |
container_volume | 45 |
creator | Zhang, Di Ni, Yuan‐Hua |
description | A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results.
A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. |
doi_str_mv | 10.1002/oca.3062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2911028356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2911028356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3422-77fe6c1ad385413495ab65f6d73ed97f7fc1554833b18c3d394c4dec62d2a0963</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmsnHZnMs9ZtCL3oOaTbBlN1NTbLK_nu31qunYeDhHeZF6BrwAjAmd8HoBcUVOUEzwFKWwIGdohkGRkuCa3GOLlLaYYwFUDJDr_feORttn71ui330X9qMRdhn3027CX2OoS2-ff4odBq7zuboTeF7F2Knsw99kXIcTB6ivURnTrfJXv3NOXp_fHhbPZfrzdPLarkuDWWElEI4WxnQDa05A8ok19uKu6oR1DZSOOEMcM5qSrdQG9pQyQxrrKlIQzSWFZ2jm2PuPobPwaasdmGI_XRSEQmASU35Qd0elYkhpWidmp7rdBwVYHVoSk1NqUNTEy2P9Nu3dvzXqc1q-et_APCTajk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2911028356</pqid></control><display><type>article</type><title>Differential privacy optimal control with asymmetric information structure</title><source>Wiley Online Library All Journals</source><creator>Zhang, Di ; Ni, Yuan‐Hua</creator><creatorcontrib>Zhang, Di ; Ni, Yuan‐Hua</creatorcontrib><description>A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results.
A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked.</description><identifier>ISSN: 0143-2087</identifier><identifier>EISSN: 1099-1514</identifier><identifier>DOI: 10.1002/oca.3062</identifier><language>eng</language><publisher>Glasgow: Wiley Subscription Services, Inc</publisher><subject>asymmetric information ; Asymmetry ; Controllers ; decentralized control ; Design parameters ; differential privacy ; Kalman filters ; linear‐quadratic optimal control ; Optimal control ; Parameter sensitivity ; Performance degradation ; Privacy ; Random noise</subject><ispartof>Optimal control applications & methods, 2024-01, Vol.45 (1), p.393-412</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3422-77fe6c1ad385413495ab65f6d73ed97f7fc1554833b18c3d394c4dec62d2a0963</cites><orcidid>0000-0003-3984-3120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Foca.3062$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Foca.3062$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Ni, Yuan‐Hua</creatorcontrib><title>Differential privacy optimal control with asymmetric information structure</title><title>Optimal control applications & methods</title><description>A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results.
A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked.</description><subject>asymmetric information</subject><subject>Asymmetry</subject><subject>Controllers</subject><subject>decentralized control</subject><subject>Design parameters</subject><subject>differential privacy</subject><subject>Kalman filters</subject><subject>linear‐quadratic optimal control</subject><subject>Optimal control</subject><subject>Parameter sensitivity</subject><subject>Performance degradation</subject><subject>Privacy</subject><subject>Random noise</subject><issn>0143-2087</issn><issn>1099-1514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtYq-BMWvHjZmsnHZnMs9ZtCL3oOaTbBlN1NTbLK_nu31qunYeDhHeZF6BrwAjAmd8HoBcUVOUEzwFKWwIGdohkGRkuCa3GOLlLaYYwFUDJDr_feORttn71ui330X9qMRdhn3027CX2OoS2-ff4odBq7zuboTeF7F2Knsw99kXIcTB6ivURnTrfJXv3NOXp_fHhbPZfrzdPLarkuDWWElEI4WxnQDa05A8ok19uKu6oR1DZSOOEMcM5qSrdQG9pQyQxrrKlIQzSWFZ2jm2PuPobPwaasdmGI_XRSEQmASU35Qd0elYkhpWidmp7rdBwVYHVoSk1NqUNTEy2P9Nu3dvzXqc1q-et_APCTajk</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Zhang, Di</creator><creator>Ni, Yuan‐Hua</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3984-3120</orcidid></search><sort><creationdate>202401</creationdate><title>Differential privacy optimal control with asymmetric information structure</title><author>Zhang, Di ; Ni, Yuan‐Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3422-77fe6c1ad385413495ab65f6d73ed97f7fc1554833b18c3d394c4dec62d2a0963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>asymmetric information</topic><topic>Asymmetry</topic><topic>Controllers</topic><topic>decentralized control</topic><topic>Design parameters</topic><topic>differential privacy</topic><topic>Kalman filters</topic><topic>linear‐quadratic optimal control</topic><topic>Optimal control</topic><topic>Parameter sensitivity</topic><topic>Performance degradation</topic><topic>Privacy</topic><topic>Random noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Di</creatorcontrib><creatorcontrib>Ni, Yuan‐Hua</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optimal control applications & methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Di</au><au>Ni, Yuan‐Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential privacy optimal control with asymmetric information structure</atitle><jtitle>Optimal control applications & methods</jtitle><date>2024-01</date><risdate>2024</risdate><volume>45</volume><issue>1</issue><spage>393</spage><epage>412</epage><pages>393-412</pages><issn>0143-2087</issn><eissn>1099-1514</eissn><abstract>A linear‐quadratic optimal control is investigated in this article under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked. Note that the system output and tracking signal are always sensitive and easy to be filched by adversaries; thus the DP methodology is explored to protect them. Under DP Gaussian mechanism, the optimal linear controllers are first studied for finite‐horizon and infinite‐horizon problems. Then, the bounds of mean‐square error of steady‐state Kalman filter estimator is provided, and the DP parameter design will be guided that characterizes the privacy of sensitive information. As the DP Gaussian noise will degrade the controlled performance, the degraded performance is quantitatively calculated. Finally, a numerical example is given that shows the efficiency of obtained results.
A linear‐quadratic (LQ) optimal control is investigated in this paper under the differential privacy (DP) philosophy to trade off the performance and privacy of sensitive information, where the two controllers have asymmetric information structure and some prescribed signal needs to be tracked.</abstract><cop>Glasgow</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/oca.3062</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-3984-3120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-2087 |
ispartof | Optimal control applications & methods, 2024-01, Vol.45 (1), p.393-412 |
issn | 0143-2087 1099-1514 |
language | eng |
recordid | cdi_proquest_journals_2911028356 |
source | Wiley Online Library All Journals |
subjects | asymmetric information Asymmetry Controllers decentralized control Design parameters differential privacy Kalman filters linear‐quadratic optimal control Optimal control Parameter sensitivity Performance degradation Privacy Random noise |
title | Differential privacy optimal control with asymmetric information structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A05%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20privacy%20optimal%20control%20with%20asymmetric%20information%20structure&rft.jtitle=Optimal%20control%20applications%20&%20methods&rft.au=Zhang,%20Di&rft.date=2024-01&rft.volume=45&rft.issue=1&rft.spage=393&rft.epage=412&rft.pages=393-412&rft.issn=0143-2087&rft.eissn=1099-1514&rft_id=info:doi/10.1002/oca.3062&rft_dat=%3Cproquest_cross%3E2911028356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2911028356&rft_id=info:pmid/&rfr_iscdi=true |