Acousto-optic modulation of gigawatt-scale laser pulses in ambient air

Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2024-01, Vol.18 (1), p.54-59
Hauptverfasser: Schrödel, Yannick, Hartmann, Claas, Zheng, Jiaan, Lang, Tino, Steudel, Max, Rutsch, Matthias, Salman, Sarper H., Kellert, Martin, Pergament, Mikhail, Hahn-Jose, Thomas, Suppelt, Sven, Dörsam, Jan Helge, Harth, Anne, Leemans, Wim P., Kärtner, Franz X., Hartl, Ingmar, Kupnik, Mario, Heyl, Christoph M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 54
container_title Nature photonics
container_volume 18
creator Schrödel, Yannick
Hartmann, Claas
Zheng, Jiaan
Lang, Tino
Steudel, Max
Rutsch, Matthias
Salman, Sarper H.
Kellert, Martin
Pergament, Mikhail
Hahn-Jose, Thomas
Suppelt, Sven
Dörsam, Jan Helge
Harth, Anne
Leemans, Wim P.
Kärtner, Franz X.
Hartl, Ingmar
Kupnik, Mario
Heyl, Christoph M.
description Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions. Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses.
doi_str_mv 10.1038/s41566-023-01304-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2910735543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910735543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz9Ekk6TtcVlcFRa86DnENF2ydJuapMj-e6MVvXmZGR7vzQwfQteM3jIK9V0STCpFKAdCGVBBjidowSrREFE3cPo71_IcXaS0p1RCw_kCbVY2TCkHEsbsLT6EdupN9mHAocM7vzMfJmeSrOkd7k1yEY9Tn1zCfsDm8ObdkLHx8RKddaboVz99iV439y_rR7J9fnhar7bEgoJMSmnrWlFQnbECjKWWWVtzqGVbPqStFUUSnRQVVao1SjLgVFipeGWca2CJbua9Ywzvk0tZ78MUh3JS84bRCqQUUFx8dtkYUoqu02P0BxOPmlH9xUvPvHThpb956WMJwRxKxTzsXPxb_U_qEy7EbZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910735543</pqid></control><display><type>article</type><title>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Steudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M.</creator><creatorcontrib>Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Steudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M.</creatorcontrib><description>Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions. Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01304-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1095 ; 639/624/1107 ; 639/766/400/584 ; Acousto-optics ; Applied and Technical Physics ; Astronomy ; Coherent light ; Damage ; Deflection ; Fabrication ; Gravitational waves ; Gravity ; Lasers ; Luminous intensity ; Modulation ; Nonlinear systems ; Optical components ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Ultrasonic imaging ; Ultrasound ; Waveguides ; Waves</subject><ispartof>Nature photonics, 2024-01, Vol.18 (1), p.54-59</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</citedby><cites>FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</cites><orcidid>0000-0003-2133-5224 ; 0000-0002-8807-683X ; 0000-0001-7274-754X ; 0000-0001-8829-5461 ; 0000-0002-5764-1955 ; 0000-0003-2287-4481 ; 0000-0001-9807-6641 ; 0000-0003-0075-3371 ; 0000-0002-2338-9333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-023-01304-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-023-01304-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Schrödel, Yannick</creatorcontrib><creatorcontrib>Hartmann, Claas</creatorcontrib><creatorcontrib>Zheng, Jiaan</creatorcontrib><creatorcontrib>Lang, Tino</creatorcontrib><creatorcontrib>Steudel, Max</creatorcontrib><creatorcontrib>Rutsch, Matthias</creatorcontrib><creatorcontrib>Salman, Sarper H.</creatorcontrib><creatorcontrib>Kellert, Martin</creatorcontrib><creatorcontrib>Pergament, Mikhail</creatorcontrib><creatorcontrib>Hahn-Jose, Thomas</creatorcontrib><creatorcontrib>Suppelt, Sven</creatorcontrib><creatorcontrib>Dörsam, Jan Helge</creatorcontrib><creatorcontrib>Harth, Anne</creatorcontrib><creatorcontrib>Leemans, Wim P.</creatorcontrib><creatorcontrib>Kärtner, Franz X.</creatorcontrib><creatorcontrib>Hartl, Ingmar</creatorcontrib><creatorcontrib>Kupnik, Mario</creatorcontrib><creatorcontrib>Heyl, Christoph M.</creatorcontrib><title>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions. Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses.</description><subject>639/624/1020/1095</subject><subject>639/624/1107</subject><subject>639/766/400/584</subject><subject>Acousto-optics</subject><subject>Applied and Technical Physics</subject><subject>Astronomy</subject><subject>Coherent light</subject><subject>Damage</subject><subject>Deflection</subject><subject>Fabrication</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Lasers</subject><subject>Luminous intensity</subject><subject>Modulation</subject><subject>Nonlinear systems</subject><subject>Optical components</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Waveguides</subject><subject>Waves</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz9Ekk6TtcVlcFRa86DnENF2ydJuapMj-e6MVvXmZGR7vzQwfQteM3jIK9V0STCpFKAdCGVBBjidowSrREFE3cPo71_IcXaS0p1RCw_kCbVY2TCkHEsbsLT6EdupN9mHAocM7vzMfJmeSrOkd7k1yEY9Tn1zCfsDm8ObdkLHx8RKddaboVz99iV439y_rR7J9fnhar7bEgoJMSmnrWlFQnbECjKWWWVtzqGVbPqStFUUSnRQVVao1SjLgVFipeGWca2CJbua9Ywzvk0tZ78MUh3JS84bRCqQUUFx8dtkYUoqu02P0BxOPmlH9xUvPvHThpb956WMJwRxKxTzsXPxb_U_qEy7EbZU</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Schrödel, Yannick</creator><creator>Hartmann, Claas</creator><creator>Zheng, Jiaan</creator><creator>Lang, Tino</creator><creator>Steudel, Max</creator><creator>Rutsch, Matthias</creator><creator>Salman, Sarper H.</creator><creator>Kellert, Martin</creator><creator>Pergament, Mikhail</creator><creator>Hahn-Jose, Thomas</creator><creator>Suppelt, Sven</creator><creator>Dörsam, Jan Helge</creator><creator>Harth, Anne</creator><creator>Leemans, Wim P.</creator><creator>Kärtner, Franz X.</creator><creator>Hartl, Ingmar</creator><creator>Kupnik, Mario</creator><creator>Heyl, Christoph M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2133-5224</orcidid><orcidid>https://orcid.org/0000-0002-8807-683X</orcidid><orcidid>https://orcid.org/0000-0001-7274-754X</orcidid><orcidid>https://orcid.org/0000-0001-8829-5461</orcidid><orcidid>https://orcid.org/0000-0002-5764-1955</orcidid><orcidid>https://orcid.org/0000-0003-2287-4481</orcidid><orcidid>https://orcid.org/0000-0001-9807-6641</orcidid><orcidid>https://orcid.org/0000-0003-0075-3371</orcidid><orcidid>https://orcid.org/0000-0002-2338-9333</orcidid></search><sort><creationdate>20240101</creationdate><title>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</title><author>Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Steudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/624/1020/1095</topic><topic>639/624/1107</topic><topic>639/766/400/584</topic><topic>Acousto-optics</topic><topic>Applied and Technical Physics</topic><topic>Astronomy</topic><topic>Coherent light</topic><topic>Damage</topic><topic>Deflection</topic><topic>Fabrication</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Lasers</topic><topic>Luminous intensity</topic><topic>Modulation</topic><topic>Nonlinear systems</topic><topic>Optical components</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Waveguides</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrödel, Yannick</creatorcontrib><creatorcontrib>Hartmann, Claas</creatorcontrib><creatorcontrib>Zheng, Jiaan</creatorcontrib><creatorcontrib>Lang, Tino</creatorcontrib><creatorcontrib>Steudel, Max</creatorcontrib><creatorcontrib>Rutsch, Matthias</creatorcontrib><creatorcontrib>Salman, Sarper H.</creatorcontrib><creatorcontrib>Kellert, Martin</creatorcontrib><creatorcontrib>Pergament, Mikhail</creatorcontrib><creatorcontrib>Hahn-Jose, Thomas</creatorcontrib><creatorcontrib>Suppelt, Sven</creatorcontrib><creatorcontrib>Dörsam, Jan Helge</creatorcontrib><creatorcontrib>Harth, Anne</creatorcontrib><creatorcontrib>Leemans, Wim P.</creatorcontrib><creatorcontrib>Kärtner, Franz X.</creatorcontrib><creatorcontrib>Hartl, Ingmar</creatorcontrib><creatorcontrib>Kupnik, Mario</creatorcontrib><creatorcontrib>Heyl, Christoph M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrödel, Yannick</au><au>Hartmann, Claas</au><au>Zheng, Jiaan</au><au>Lang, Tino</au><au>Steudel, Max</au><au>Rutsch, Matthias</au><au>Salman, Sarper H.</au><au>Kellert, Martin</au><au>Pergament, Mikhail</au><au>Hahn-Jose, Thomas</au><au>Suppelt, Sven</au><au>Dörsam, Jan Helge</au><au>Harth, Anne</au><au>Leemans, Wim P.</au><au>Kärtner, Franz X.</au><au>Hartl, Ingmar</au><au>Kupnik, Mario</au><au>Heyl, Christoph M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>54</spage><epage>59</epage><pages>54-59</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions. Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01304-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2133-5224</orcidid><orcidid>https://orcid.org/0000-0002-8807-683X</orcidid><orcidid>https://orcid.org/0000-0001-7274-754X</orcidid><orcidid>https://orcid.org/0000-0001-8829-5461</orcidid><orcidid>https://orcid.org/0000-0002-5764-1955</orcidid><orcidid>https://orcid.org/0000-0003-2287-4481</orcidid><orcidid>https://orcid.org/0000-0001-9807-6641</orcidid><orcidid>https://orcid.org/0000-0003-0075-3371</orcidid><orcidid>https://orcid.org/0000-0002-2338-9333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2024-01, Vol.18 (1), p.54-59
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_2910735543
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 639/624/1020/1095
639/624/1107
639/766/400/584
Acousto-optics
Applied and Technical Physics
Astronomy
Coherent light
Damage
Deflection
Fabrication
Gravitational waves
Gravity
Lasers
Luminous intensity
Modulation
Nonlinear systems
Optical components
Optics
Photonics
Physics
Physics and Astronomy
Quantum Physics
Ultrasonic imaging
Ultrasound
Waveguides
Waves
title Acousto-optic modulation of gigawatt-scale laser pulses in ambient air
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acousto-optic%20modulation%20of%20gigawatt-scale%20laser%20pulses%20in%20ambient%20air&rft.jtitle=Nature%20photonics&rft.au=Schr%C3%B6del,%20Yannick&rft.date=2024-01-01&rft.volume=18&rft.issue=1&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01304-y&rft_dat=%3Cproquest_cross%3E2910735543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910735543&rft_id=info:pmid/&rfr_iscdi=true