Acousto-optic modulation of gigawatt-scale laser pulses in ambient air
Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high op...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2024-01, Vol.18 (1), p.54-59 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 54 |
container_title | Nature photonics |
container_volume | 18 |
creator | Schrödel, Yannick Hartmann, Claas Zheng, Jiaan Lang, Tino Steudel, Max Rutsch, Matthias Salman, Sarper H. Kellert, Martin Pergament, Mikhail Hahn-Jose, Thomas Suppelt, Sven Dörsam, Jan Helge Harth, Anne Leemans, Wim P. Kärtner, Franz X. Hartl, Ingmar Kupnik, Mario Heyl, Christoph M. |
description | Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions.
Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses. |
doi_str_mv | 10.1038/s41566-023-01304-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2910735543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910735543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Bz9Ekk6TtcVlcFRa86DnENF2ydJuapMj-e6MVvXmZGR7vzQwfQteM3jIK9V0STCpFKAdCGVBBjidowSrREFE3cPo71_IcXaS0p1RCw_kCbVY2TCkHEsbsLT6EdupN9mHAocM7vzMfJmeSrOkd7k1yEY9Tn1zCfsDm8ObdkLHx8RKddaboVz99iV439y_rR7J9fnhar7bEgoJMSmnrWlFQnbECjKWWWVtzqGVbPqStFUUSnRQVVao1SjLgVFipeGWca2CJbua9Ywzvk0tZ78MUh3JS84bRCqQUUFx8dtkYUoqu02P0BxOPmlH9xUvPvHThpb956WMJwRxKxTzsXPxb_U_qEy7EbZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910735543</pqid></control><display><type>article</type><title>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Steudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M.</creator><creatorcontrib>Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Steudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M.</creatorcontrib><description>Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions.
Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-023-01304-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1020/1095 ; 639/624/1107 ; 639/766/400/584 ; Acousto-optics ; Applied and Technical Physics ; Astronomy ; Coherent light ; Damage ; Deflection ; Fabrication ; Gravitational waves ; Gravity ; Lasers ; Luminous intensity ; Modulation ; Nonlinear systems ; Optical components ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Ultrasonic imaging ; Ultrasound ; Waveguides ; Waves</subject><ispartof>Nature photonics, 2024-01, Vol.18 (1), p.54-59</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</citedby><cites>FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</cites><orcidid>0000-0003-2133-5224 ; 0000-0002-8807-683X ; 0000-0001-7274-754X ; 0000-0001-8829-5461 ; 0000-0002-5764-1955 ; 0000-0003-2287-4481 ; 0000-0001-9807-6641 ; 0000-0003-0075-3371 ; 0000-0002-2338-9333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-023-01304-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-023-01304-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Schrödel, Yannick</creatorcontrib><creatorcontrib>Hartmann, Claas</creatorcontrib><creatorcontrib>Zheng, Jiaan</creatorcontrib><creatorcontrib>Lang, Tino</creatorcontrib><creatorcontrib>Steudel, Max</creatorcontrib><creatorcontrib>Rutsch, Matthias</creatorcontrib><creatorcontrib>Salman, Sarper H.</creatorcontrib><creatorcontrib>Kellert, Martin</creatorcontrib><creatorcontrib>Pergament, Mikhail</creatorcontrib><creatorcontrib>Hahn-Jose, Thomas</creatorcontrib><creatorcontrib>Suppelt, Sven</creatorcontrib><creatorcontrib>Dörsam, Jan Helge</creatorcontrib><creatorcontrib>Harth, Anne</creatorcontrib><creatorcontrib>Leemans, Wim P.</creatorcontrib><creatorcontrib>Kärtner, Franz X.</creatorcontrib><creatorcontrib>Hartl, Ingmar</creatorcontrib><creatorcontrib>Kupnik, Mario</creatorcontrib><creatorcontrib>Heyl, Christoph M.</creatorcontrib><title>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions.
Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses.</description><subject>639/624/1020/1095</subject><subject>639/624/1107</subject><subject>639/766/400/584</subject><subject>Acousto-optics</subject><subject>Applied and Technical Physics</subject><subject>Astronomy</subject><subject>Coherent light</subject><subject>Damage</subject><subject>Deflection</subject><subject>Fabrication</subject><subject>Gravitational waves</subject><subject>Gravity</subject><subject>Lasers</subject><subject>Luminous intensity</subject><subject>Modulation</subject><subject>Nonlinear systems</subject><subject>Optical components</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Waveguides</subject><subject>Waves</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Bz9Ekk6TtcVlcFRa86DnENF2ydJuapMj-e6MVvXmZGR7vzQwfQteM3jIK9V0STCpFKAdCGVBBjidowSrREFE3cPo71_IcXaS0p1RCw_kCbVY2TCkHEsbsLT6EdupN9mHAocM7vzMfJmeSrOkd7k1yEY9Tn1zCfsDm8ObdkLHx8RKddaboVz99iV439y_rR7J9fnhar7bEgoJMSmnrWlFQnbECjKWWWVtzqGVbPqStFUUSnRQVVao1SjLgVFipeGWca2CJbua9Ywzvk0tZ78MUh3JS84bRCqQUUFx8dtkYUoqu02P0BxOPmlH9xUvPvHThpb956WMJwRxKxTzsXPxb_U_qEy7EbZU</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Schrödel, Yannick</creator><creator>Hartmann, Claas</creator><creator>Zheng, Jiaan</creator><creator>Lang, Tino</creator><creator>Steudel, Max</creator><creator>Rutsch, Matthias</creator><creator>Salman, Sarper H.</creator><creator>Kellert, Martin</creator><creator>Pergament, Mikhail</creator><creator>Hahn-Jose, Thomas</creator><creator>Suppelt, Sven</creator><creator>Dörsam, Jan Helge</creator><creator>Harth, Anne</creator><creator>Leemans, Wim P.</creator><creator>Kärtner, Franz X.</creator><creator>Hartl, Ingmar</creator><creator>Kupnik, Mario</creator><creator>Heyl, Christoph M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-2133-5224</orcidid><orcidid>https://orcid.org/0000-0002-8807-683X</orcidid><orcidid>https://orcid.org/0000-0001-7274-754X</orcidid><orcidid>https://orcid.org/0000-0001-8829-5461</orcidid><orcidid>https://orcid.org/0000-0002-5764-1955</orcidid><orcidid>https://orcid.org/0000-0003-2287-4481</orcidid><orcidid>https://orcid.org/0000-0001-9807-6641</orcidid><orcidid>https://orcid.org/0000-0003-0075-3371</orcidid><orcidid>https://orcid.org/0000-0002-2338-9333</orcidid></search><sort><creationdate>20240101</creationdate><title>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</title><author>Schrödel, Yannick ; Hartmann, Claas ; Zheng, Jiaan ; Lang, Tino ; Steudel, Max ; Rutsch, Matthias ; Salman, Sarper H. ; Kellert, Martin ; Pergament, Mikhail ; Hahn-Jose, Thomas ; Suppelt, Sven ; Dörsam, Jan Helge ; Harth, Anne ; Leemans, Wim P. ; Kärtner, Franz X. ; Hartl, Ingmar ; Kupnik, Mario ; Heyl, Christoph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-363d886036fac43ac0c1cc82385d1740dc4c0c4f547066da6513204c5627aee93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/624/1020/1095</topic><topic>639/624/1107</topic><topic>639/766/400/584</topic><topic>Acousto-optics</topic><topic>Applied and Technical Physics</topic><topic>Astronomy</topic><topic>Coherent light</topic><topic>Damage</topic><topic>Deflection</topic><topic>Fabrication</topic><topic>Gravitational waves</topic><topic>Gravity</topic><topic>Lasers</topic><topic>Luminous intensity</topic><topic>Modulation</topic><topic>Nonlinear systems</topic><topic>Optical components</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Waveguides</topic><topic>Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schrödel, Yannick</creatorcontrib><creatorcontrib>Hartmann, Claas</creatorcontrib><creatorcontrib>Zheng, Jiaan</creatorcontrib><creatorcontrib>Lang, Tino</creatorcontrib><creatorcontrib>Steudel, Max</creatorcontrib><creatorcontrib>Rutsch, Matthias</creatorcontrib><creatorcontrib>Salman, Sarper H.</creatorcontrib><creatorcontrib>Kellert, Martin</creatorcontrib><creatorcontrib>Pergament, Mikhail</creatorcontrib><creatorcontrib>Hahn-Jose, Thomas</creatorcontrib><creatorcontrib>Suppelt, Sven</creatorcontrib><creatorcontrib>Dörsam, Jan Helge</creatorcontrib><creatorcontrib>Harth, Anne</creatorcontrib><creatorcontrib>Leemans, Wim P.</creatorcontrib><creatorcontrib>Kärtner, Franz X.</creatorcontrib><creatorcontrib>Hartl, Ingmar</creatorcontrib><creatorcontrib>Kupnik, Mario</creatorcontrib><creatorcontrib>Heyl, Christoph M.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schrödel, Yannick</au><au>Hartmann, Claas</au><au>Zheng, Jiaan</au><au>Lang, Tino</au><au>Steudel, Max</au><au>Rutsch, Matthias</au><au>Salman, Sarper H.</au><au>Kellert, Martin</au><au>Pergament, Mikhail</au><au>Hahn-Jose, Thomas</au><au>Suppelt, Sven</au><au>Dörsam, Jan Helge</au><au>Harth, Anne</au><au>Leemans, Wim P.</au><au>Kärtner, Franz X.</au><au>Hartl, Ingmar</au><au>Kupnik, Mario</au><au>Heyl, Christoph M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acousto-optic modulation of gigawatt-scale laser pulses in ambient air</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>54</spage><epage>59</epage><pages>54-59</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Control over the intensity, shape, direction and phase of coherent light is essential in numerous fields, from gravitational wave astronomy, quantum metrology and ultrafast sciences to semiconductor fabrication. Modern photonics, however, can involve parameter regimes where the wavelength or high optical powers involved restrict control due to absorption, light-induced damage or optical nonlinearity in solid media. Here we propose to circumvent these constraints using gaseous media tailored by high-intensity ultrasound waves. We demonstrate an implementation of this approach by efficiently deflecting ultrashort laser pulses using ultrasound waves in ambient air, without the use of transmissive solid media. At optical peak powers of 20 GW, exceeding previous limits of solid-based acousto-optic modulation by about three orders of magnitude, we reach a deflection efficiency greater than 50% while preserving excellent beam quality. Our approach is not limited to laser pulse deflection; gas-phase photonic schemes controlled by sonic waves could potentially be useful for realizing a new class of optical elements such as lenses or waveguides, which are effectively invulnerable against damage and can operate in new spectral regions.
Air-based acousto-optic modulation is shown to be able to efficiently control gigawatt-scale, ultrashort laser pulses.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-023-01304-y</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2133-5224</orcidid><orcidid>https://orcid.org/0000-0002-8807-683X</orcidid><orcidid>https://orcid.org/0000-0001-7274-754X</orcidid><orcidid>https://orcid.org/0000-0001-8829-5461</orcidid><orcidid>https://orcid.org/0000-0002-5764-1955</orcidid><orcidid>https://orcid.org/0000-0003-2287-4481</orcidid><orcidid>https://orcid.org/0000-0001-9807-6641</orcidid><orcidid>https://orcid.org/0000-0003-0075-3371</orcidid><orcidid>https://orcid.org/0000-0002-2338-9333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2024-01, Vol.18 (1), p.54-59 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2910735543 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 639/624/1020/1095 639/624/1107 639/766/400/584 Acousto-optics Applied and Technical Physics Astronomy Coherent light Damage Deflection Fabrication Gravitational waves Gravity Lasers Luminous intensity Modulation Nonlinear systems Optical components Optics Photonics Physics Physics and Astronomy Quantum Physics Ultrasonic imaging Ultrasound Waveguides Waves |
title | Acousto-optic modulation of gigawatt-scale laser pulses in ambient air |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T11%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acousto-optic%20modulation%20of%20gigawatt-scale%20laser%20pulses%20in%20ambient%20air&rft.jtitle=Nature%20photonics&rft.au=Schr%C3%B6del,%20Yannick&rft.date=2024-01-01&rft.volume=18&rft.issue=1&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-023-01304-y&rft_dat=%3Cproquest_cross%3E2910735543%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910735543&rft_id=info:pmid/&rfr_iscdi=true |