Cross-target Stance Detection by Exploiting Target Analytical Perspectives
Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. Howe...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ding, Daijun Chen, Rong Jing, Liwen Bowen, Zhang Huang, Xu Li, Dong Zhao, Xiaowen Song, Ge |
description | Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2910701502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910701502</sourcerecordid><originalsourceid>FETCH-proquest_journals_29107015023</originalsourceid><addsrcrecordid>eNqNy9EKgjAUgOERBEn5DoOuhbll1mWYEV0FeS9LTjIZm-0cI9--oh6gq__m-ycskkqlyWYl5YzFiJ0QQq5zmWUqYqcieMSEdGiB-IW0a4DvgaAh4x2_jrx89tYbMq7l1VftnLYjmUZbfoaA_cc-ABdsetMWIf51zpaHsiqOSR_8fQCkuvNDeL9Yy20qcpFmQqr_1AvqAj0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910701502</pqid></control><display><type>article</type><title>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</title><source>Free E- Journals</source><creator>Ding, Daijun ; Chen, Rong ; Jing, Liwen ; Bowen, Zhang ; Huang, Xu ; Li, Dong ; Zhao, Xiaowen ; Song, Ge</creator><creatorcontrib>Ding, Daijun ; Chen, Rong ; Jing, Liwen ; Bowen, Zhang ; Huang, Xu ; Li, Dong ; Zhao, Xiaowen ; Song, Ge</creatorcontrib><description>Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Invariants ; Knowledge management ; Large language models ; Target detection</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ding, Daijun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Jing, Liwen</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Zhao, Xiaowen</creatorcontrib><creatorcontrib>Song, Ge</creatorcontrib><title>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</title><title>arXiv.org</title><description>Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods.</description><subject>Invariants</subject><subject>Knowledge management</subject><subject>Large language models</subject><subject>Target detection</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy9EKgjAUgOERBEn5DoOuhbll1mWYEV0FeS9LTjIZm-0cI9--oh6gq__m-ycskkqlyWYl5YzFiJ0QQq5zmWUqYqcieMSEdGiB-IW0a4DvgaAh4x2_jrx89tYbMq7l1VftnLYjmUZbfoaA_cc-ABdsetMWIf51zpaHsiqOSR_8fQCkuvNDeL9Yy20qcpFmQqr_1AvqAj0E</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Ding, Daijun</creator><creator>Chen, Rong</creator><creator>Jing, Liwen</creator><creator>Bowen, Zhang</creator><creator>Huang, Xu</creator><creator>Li, Dong</creator><creator>Zhao, Xiaowen</creator><creator>Song, Ge</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240104</creationdate><title>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</title><author>Ding, Daijun ; Chen, Rong ; Jing, Liwen ; Bowen, Zhang ; Huang, Xu ; Li, Dong ; Zhao, Xiaowen ; Song, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29107015023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Invariants</topic><topic>Knowledge management</topic><topic>Large language models</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Daijun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Jing, Liwen</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Zhao, Xiaowen</creatorcontrib><creatorcontrib>Song, Ge</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Daijun</au><au>Chen, Rong</au><au>Jing, Liwen</au><au>Bowen, Zhang</au><au>Huang, Xu</au><au>Li, Dong</au><au>Zhao, Xiaowen</au><au>Song, Ge</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</atitle><jtitle>arXiv.org</jtitle><date>2024-01-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2910701502 |
source | Free E- Journals |
subjects | Invariants Knowledge management Large language models Target detection |
title | Cross-target Stance Detection by Exploiting Target Analytical Perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cross-target%20Stance%20Detection%20by%20Exploiting%20Target%20Analytical%20Perspectives&rft.jtitle=arXiv.org&rft.au=Ding,%20Daijun&rft.date=2024-01-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2910701502%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910701502&rft_id=info:pmid/&rfr_iscdi=true |