Cross-target Stance Detection by Exploiting Target Analytical Perspectives

Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. Howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Ding, Daijun, Chen, Rong, Jing, Liwen, Bowen, Zhang, Huang, Xu, Li, Dong, Zhao, Xiaowen, Song, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ding, Daijun
Chen, Rong
Jing, Liwen
Bowen, Zhang
Huang, Xu
Li, Dong
Zhao, Xiaowen
Song, Ge
description Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2910701502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910701502</sourcerecordid><originalsourceid>FETCH-proquest_journals_29107015023</originalsourceid><addsrcrecordid>eNqNy9EKgjAUgOERBEn5DoOuhbll1mWYEV0FeS9LTjIZm-0cI9--oh6gq__m-ycskkqlyWYl5YzFiJ0QQq5zmWUqYqcieMSEdGiB-IW0a4DvgaAh4x2_jrx89tYbMq7l1VftnLYjmUZbfoaA_cc-ABdsetMWIf51zpaHsiqOSR_8fQCkuvNDeL9Yy20qcpFmQqr_1AvqAj0E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910701502</pqid></control><display><type>article</type><title>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</title><source>Free E- Journals</source><creator>Ding, Daijun ; Chen, Rong ; Jing, Liwen ; Bowen, Zhang ; Huang, Xu ; Li, Dong ; Zhao, Xiaowen ; Song, Ge</creator><creatorcontrib>Ding, Daijun ; Chen, Rong ; Jing, Liwen ; Bowen, Zhang ; Huang, Xu ; Li, Dong ; Zhao, Xiaowen ; Song, Ge</creatorcontrib><description>Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Invariants ; Knowledge management ; Large language models ; Target detection</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Ding, Daijun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Jing, Liwen</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Zhao, Xiaowen</creatorcontrib><creatorcontrib>Song, Ge</creatorcontrib><title>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</title><title>arXiv.org</title><description>Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods.</description><subject>Invariants</subject><subject>Knowledge management</subject><subject>Large language models</subject><subject>Target detection</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy9EKgjAUgOERBEn5DoOuhbll1mWYEV0FeS9LTjIZm-0cI9--oh6gq__m-ycskkqlyWYl5YzFiJ0QQq5zmWUqYqcieMSEdGiB-IW0a4DvgaAh4x2_jrx89tYbMq7l1VftnLYjmUZbfoaA_cc-ABdsetMWIf51zpaHsiqOSR_8fQCkuvNDeL9Yy20qcpFmQqr_1AvqAj0E</recordid><startdate>20240104</startdate><enddate>20240104</enddate><creator>Ding, Daijun</creator><creator>Chen, Rong</creator><creator>Jing, Liwen</creator><creator>Bowen, Zhang</creator><creator>Huang, Xu</creator><creator>Li, Dong</creator><creator>Zhao, Xiaowen</creator><creator>Song, Ge</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240104</creationdate><title>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</title><author>Ding, Daijun ; Chen, Rong ; Jing, Liwen ; Bowen, Zhang ; Huang, Xu ; Li, Dong ; Zhao, Xiaowen ; Song, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29107015023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Invariants</topic><topic>Knowledge management</topic><topic>Large language models</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>Ding, Daijun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Jing, Liwen</creatorcontrib><creatorcontrib>Bowen, Zhang</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Zhao, Xiaowen</creatorcontrib><creatorcontrib>Song, Ge</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Daijun</au><au>Chen, Rong</au><au>Jing, Liwen</au><au>Bowen, Zhang</au><au>Huang, Xu</au><au>Li, Dong</au><au>Zhao, Xiaowen</au><au>Song, Ge</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Cross-target Stance Detection by Exploiting Target Analytical Perspectives</atitle><jtitle>arXiv.org</jtitle><date>2024-01-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Cross-target stance detection (CTSD) is an important task, which infers the attitude of the destination target by utilizing annotated data derived from the source target. One important approach in CTSD is to extract domain-invariant features to bridge the knowledge gap between multiple targets. However, the analysis of informal and short text structure, and implicit expressions, complicate the extraction of domain-invariant knowledge. In this paper, we propose a Multi-Perspective Prompt-Tuning (MPPT) model for CTSD that uses the analysis perspective as a bridge to transfer knowledge. First, we develop a two-stage instruct-based chain-of-thought method (TsCoT) to elicit target analysis perspectives and provide natural language explanations (NLEs) from multiple viewpoints by formulating instructions based on large language model (LLM). Second, we propose a multi-perspective prompt-tuning framework (MultiPLN) to fuse the NLEs into the stance predictor. Extensive experiments results demonstrate the superiority of MPPT against the state-of-the-art baseline methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2910701502
source Free E- Journals
subjects Invariants
Knowledge management
Large language models
Target detection
title Cross-target Stance Detection by Exploiting Target Analytical Perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A58%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Cross-target%20Stance%20Detection%20by%20Exploiting%20Target%20Analytical%20Perspectives&rft.jtitle=arXiv.org&rft.au=Ding,%20Daijun&rft.date=2024-01-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2910701502%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910701502&rft_id=info:pmid/&rfr_iscdi=true