Total and static temperature statistics in compressible turbulent plane channel flow

The paper studies the statistics of total and static temperature (total $h_t$ and static $h$ enthalpy) in compressible turbulent plane channel flow using direct numerical simulations (DNS) data covering the range of centreline Mach numbers $0.3\lessapprox \bar {M}_{{{CL}}_x} \lessapprox 2.5$ and Hua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2024-01, Vol.978, Article A25
Hauptverfasser: Gerolymos, G.A., Vallet, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 978
creator Gerolymos, G.A.
Vallet, I.
description The paper studies the statistics of total and static temperature (total $h_t$ and static $h$ enthalpy) in compressible turbulent plane channel flow using direct numerical simulations (DNS) data covering the range of centreline Mach numbers $0.3\lessapprox \bar {M}_{{{CL}}_x} \lessapprox 2.5$ and Huang–Coleman–Bradshaw friction Reynolds numbers $100\lessapprox Re_{\tau ^\star }\lessapprox 1000$. For this class of very-cold-wall flows, the DNS data for correlation coefficients and joint probability density functions (p.d.f.s) show that $h_t'$ is invariably very strongly correlated with the streamwise velocity fluctuation $u'$, in contrast to static temperature (static enthalpy $h'$) whose correlation with $u'$ weakens rapidly with increasing wall distance. We study various correlations and joint p.d.f.s of $h_t'$ and $h'$ in relation to the fluctuating velocity field, including the turbulent Prandtl number $Pr_{{T}}$, and discuss the predictions of Reynolds analogy. The scaling of the mean enthalpy and the fluctuating enthalpy variance and fluxes with respect to inner and outer velocity scales is investigated. The complex behaviour and scaling of different terms in the transport equations for the enthalpy variance and fluxes are discussed.
doi_str_mv 10.1017/jfm.2023.1034
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2910081173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_1034</cupid><sourcerecordid>2910081173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a3414a90000196fc33c64423bab7ca53690e2f7689914fedfb614365530e0cfa3</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKtH7wHP284k2WxzlKJWKHip55BNE92yXyZZxP_elBa8OJdh3rx5Az9C7hEWCFgtD75bMGA8T1xckBkKqYpKivKSzAAYKxAZXJObGA8AyEFVM7LbDcm01PR7GpNJjaXJdaMLJk3BnaSY1UibntqhG4OLsalbR_O-nlrXJzq2pnfUfpq-dy317fB9S668aaO7O_c5eX9-2q03xfbt5XX9uC0sFyIVhgsURkEuVNJbzq0UgvHa1JU1JZcKHPOVXCmFwru9ryUKLsuSgwPrDZ-Th1PuGIavycWkD8MU-vxSM4UAK8SKZ1dxctkwxBic12NoOhN-NII-gtMZnD6C00dw2b88-01Xh2b_4f5i_7_4BcctcHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910081173</pqid></control><display><type>article</type><title>Total and static temperature statistics in compressible turbulent plane channel flow</title><source>Cambridge University Press Journals Complete</source><creator>Gerolymos, G.A. ; Vallet, I.</creator><creatorcontrib>Gerolymos, G.A. ; Vallet, I.</creatorcontrib><description>The paper studies the statistics of total and static temperature (total $h_t$ and static $h$ enthalpy) in compressible turbulent plane channel flow using direct numerical simulations (DNS) data covering the range of centreline Mach numbers $0.3\lessapprox \bar {M}_{{{CL}}_x} \lessapprox 2.5$ and Huang–Coleman–Bradshaw friction Reynolds numbers $100\lessapprox Re_{\tau ^\star }\lessapprox 1000$. For this class of very-cold-wall flows, the DNS data for correlation coefficients and joint probability density functions (p.d.f.s) show that $h_t'$ is invariably very strongly correlated with the streamwise velocity fluctuation $u'$, in contrast to static temperature (static enthalpy $h'$) whose correlation with $u'$ weakens rapidly with increasing wall distance. We study various correlations and joint p.d.f.s of $h_t'$ and $h'$ in relation to the fluctuating velocity field, including the turbulent Prandtl number $Pr_{{T}}$, and discuss the predictions of Reynolds analogy. The scaling of the mean enthalpy and the fluctuating enthalpy variance and fluxes with respect to inner and outer velocity scales is investigated. The complex behaviour and scaling of different terms in the transport equations for the enthalpy variance and fluxes are discussed.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.1034</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accuracy ; Channel flow ; Coefficients ; Cold ; Cold flow ; Compressibility ; Correlation coefficient ; Correlation coefficients ; Direct numerical simulation ; Enthalpy ; Fluid dynamics ; Fluid flow ; Fluxes ; Heat ; JFM Papers ; Mach number ; Prandtl number ; Probability density functions ; Probability theory ; Reynolds number ; Scaling ; Statistics ; Temperature ; Transport equations ; Turbulent flow ; Variance ; Velocity ; Velocity distribution ; Viscosity ; Wall flow</subject><ispartof>Journal of fluid mechanics, 2024-01, Vol.978, Article A25</ispartof><rights>The Author(s), 2024. Published by Cambridge University Press.</rights><rights>The Author(s), 2024. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a3414a90000196fc33c64423bab7ca53690e2f7689914fedfb614365530e0cfa3</citedby><cites>FETCH-LOGICAL-c344t-a3414a90000196fc33c64423bab7ca53690e2f7689914fedfb614365530e0cfa3</cites><orcidid>0000-0003-3207-5659 ; 0000-0003-1286-831X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023010340/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Gerolymos, G.A.</creatorcontrib><creatorcontrib>Vallet, I.</creatorcontrib><title>Total and static temperature statistics in compressible turbulent plane channel flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The paper studies the statistics of total and static temperature (total $h_t$ and static $h$ enthalpy) in compressible turbulent plane channel flow using direct numerical simulations (DNS) data covering the range of centreline Mach numbers $0.3\lessapprox \bar {M}_{{{CL}}_x} \lessapprox 2.5$ and Huang–Coleman–Bradshaw friction Reynolds numbers $100\lessapprox Re_{\tau ^\star }\lessapprox 1000$. For this class of very-cold-wall flows, the DNS data for correlation coefficients and joint probability density functions (p.d.f.s) show that $h_t'$ is invariably very strongly correlated with the streamwise velocity fluctuation $u'$, in contrast to static temperature (static enthalpy $h'$) whose correlation with $u'$ weakens rapidly with increasing wall distance. We study various correlations and joint p.d.f.s of $h_t'$ and $h'$ in relation to the fluctuating velocity field, including the turbulent Prandtl number $Pr_{{T}}$, and discuss the predictions of Reynolds analogy. The scaling of the mean enthalpy and the fluctuating enthalpy variance and fluxes with respect to inner and outer velocity scales is investigated. The complex behaviour and scaling of different terms in the transport equations for the enthalpy variance and fluxes are discussed.</description><subject>Accuracy</subject><subject>Channel flow</subject><subject>Coefficients</subject><subject>Cold</subject><subject>Cold flow</subject><subject>Compressibility</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Direct numerical simulation</subject><subject>Enthalpy</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluxes</subject><subject>Heat</subject><subject>JFM Papers</subject><subject>Mach number</subject><subject>Prandtl number</subject><subject>Probability density functions</subject><subject>Probability theory</subject><subject>Reynolds number</subject><subject>Scaling</subject><subject>Statistics</subject><subject>Temperature</subject><subject>Transport equations</subject><subject>Turbulent flow</subject><subject>Variance</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><subject>Wall flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1LAzEQxYMoWKtH7wHP284k2WxzlKJWKHip55BNE92yXyZZxP_elBa8OJdh3rx5Az9C7hEWCFgtD75bMGA8T1xckBkKqYpKivKSzAAYKxAZXJObGA8AyEFVM7LbDcm01PR7GpNJjaXJdaMLJk3BnaSY1UibntqhG4OLsalbR_O-nlrXJzq2pnfUfpq-dy317fB9S668aaO7O_c5eX9-2q03xfbt5XX9uC0sFyIVhgsURkEuVNJbzq0UgvHa1JU1JZcKHPOVXCmFwru9ryUKLsuSgwPrDZ-Th1PuGIavycWkD8MU-vxSM4UAK8SKZ1dxctkwxBic12NoOhN-NII-gtMZnD6C00dw2b88-01Xh2b_4f5i_7_4BcctcHo</recordid><startdate>20240105</startdate><enddate>20240105</enddate><creator>Gerolymos, G.A.</creator><creator>Vallet, I.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3207-5659</orcidid><orcidid>https://orcid.org/0000-0003-1286-831X</orcidid></search><sort><creationdate>20240105</creationdate><title>Total and static temperature statistics in compressible turbulent plane channel flow</title><author>Gerolymos, G.A. ; Vallet, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a3414a90000196fc33c64423bab7ca53690e2f7689914fedfb614365530e0cfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Channel flow</topic><topic>Coefficients</topic><topic>Cold</topic><topic>Cold flow</topic><topic>Compressibility</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Direct numerical simulation</topic><topic>Enthalpy</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluxes</topic><topic>Heat</topic><topic>JFM Papers</topic><topic>Mach number</topic><topic>Prandtl number</topic><topic>Probability density functions</topic><topic>Probability theory</topic><topic>Reynolds number</topic><topic>Scaling</topic><topic>Statistics</topic><topic>Temperature</topic><topic>Transport equations</topic><topic>Turbulent flow</topic><topic>Variance</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><topic>Wall flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gerolymos, G.A.</creatorcontrib><creatorcontrib>Vallet, I.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gerolymos, G.A.</au><au>Vallet, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total and static temperature statistics in compressible turbulent plane channel flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2024-01-05</date><risdate>2024</risdate><volume>978</volume><artnum>A25</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The paper studies the statistics of total and static temperature (total $h_t$ and static $h$ enthalpy) in compressible turbulent plane channel flow using direct numerical simulations (DNS) data covering the range of centreline Mach numbers $0.3\lessapprox \bar {M}_{{{CL}}_x} \lessapprox 2.5$ and Huang–Coleman–Bradshaw friction Reynolds numbers $100\lessapprox Re_{\tau ^\star }\lessapprox 1000$. For this class of very-cold-wall flows, the DNS data for correlation coefficients and joint probability density functions (p.d.f.s) show that $h_t'$ is invariably very strongly correlated with the streamwise velocity fluctuation $u'$, in contrast to static temperature (static enthalpy $h'$) whose correlation with $u'$ weakens rapidly with increasing wall distance. We study various correlations and joint p.d.f.s of $h_t'$ and $h'$ in relation to the fluctuating velocity field, including the turbulent Prandtl number $Pr_{{T}}$, and discuss the predictions of Reynolds analogy. The scaling of the mean enthalpy and the fluctuating enthalpy variance and fluxes with respect to inner and outer velocity scales is investigated. The complex behaviour and scaling of different terms in the transport equations for the enthalpy variance and fluxes are discussed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.1034</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0003-3207-5659</orcidid><orcidid>https://orcid.org/0000-0003-1286-831X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2024-01, Vol.978, Article A25
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2910081173
source Cambridge University Press Journals Complete
subjects Accuracy
Channel flow
Coefficients
Cold
Cold flow
Compressibility
Correlation coefficient
Correlation coefficients
Direct numerical simulation
Enthalpy
Fluid dynamics
Fluid flow
Fluxes
Heat
JFM Papers
Mach number
Prandtl number
Probability density functions
Probability theory
Reynolds number
Scaling
Statistics
Temperature
Transport equations
Turbulent flow
Variance
Velocity
Velocity distribution
Viscosity
Wall flow
title Total and static temperature statistics in compressible turbulent plane channel flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20and%20static%20temperature%20statistics%20in%20compressible%20turbulent%20plane%20channel%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Gerolymos,%20G.A.&rft.date=2024-01-05&rft.volume=978&rft.artnum=A25&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.1034&rft_dat=%3Cproquest_cross%3E2910081173%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910081173&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_1034&rfr_iscdi=true