In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells

Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-01, Vol.14 (1), p.n/a
Hauptverfasser: Guo, He, Yoon, Geon Woo, Li, Zi Jia, Yun, Yeonghun, Lee, Sangwook, Seo, You‐Hyun, Jeon, Nam Joong, Han, Gill Sang, Jung, Hyun Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced energy materials
container_volume 14
creator Guo, He
Yoon, Geon Woo
Li, Zi Jia
Yun, Yeonghun
Lee, Sangwook
Seo, You‐Hyun
Jeon, Nam Joong
Han, Gill Sang
Jung, Hyun Suk
description Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability. The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2).
doi_str_mv 10.1002/aenm.202302743
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2910077670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910077670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</originalsourceid><addsrcrecordid>eNqFkMFOwkAQhhujiQS5et7Ec3G72-62R0JQSFBJ0PNm287qQtvF3aKpF3kEE9-QJ7EEgt6cy0wm_zeT__e8ywD3A4zJtYSq7BNMKCY8pCdeJ2BB6LM4xKfHmZJzr-fcArcVJgGmtON9Tio01_UazUzRlGD1h6y1qZBRaGiNc9vN11RXS8jRDKx5c0tdw3bzfVCjoSlXxrU7h5SxaKyfX4oGzWuZFoBklaORUjrTUNV_eDQ3hWxZKAp34Z0pWTjoHXrXe7oZPQ7H_vThdjIcTP2MRpz6PI0hVCSmLE7jkCVxa1qyLJeEpUpGLOWKM8hZnqqMUQJhSAKIWMJpChGJJe16V_u7K2te1-BqsTBrW7UvBWmjwJwzjltVf6_Kdt4tKLGyupS2EQEWu5zFLmdxzLkFkj3wrgto_lGLwej-7pf9AZ9LhPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910077670</pqid></control><display><type>article</type><title>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, He ; Yoon, Geon Woo ; Li, Zi Jia ; Yun, Yeonghun ; Lee, Sangwook ; Seo, You‐Hyun ; Jeon, Nam Joong ; Han, Gill Sang ; Jung, Hyun Suk</creator><creatorcontrib>Guo, He ; Yoon, Geon Woo ; Li, Zi Jia ; Yun, Yeonghun ; Lee, Sangwook ; Seo, You‐Hyun ; Jeon, Nam Joong ; Han, Gill Sang ; Jung, Hyun Suk</creatorcontrib><description>Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability. The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302743</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acrylamide ; Airtightness ; Circuits ; Commercialization ; cross‐linking ; Crystal defects ; Crystal structure ; Crystallization ; Electron transport ; Energy conversion efficiency ; Grain size ; Lattice strain ; Monomers ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Polycrystals ; Polymer matrix composites ; Solar cells ; Storage stability ; Tensile strain ; Titanium dioxide</subject><ispartof>Advanced energy materials, 2024-01, Vol.14 (1), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</citedby><cites>FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</cites><orcidid>0000-0002-7803-6930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202302743$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202302743$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guo, He</creatorcontrib><creatorcontrib>Yoon, Geon Woo</creatorcontrib><creatorcontrib>Li, Zi Jia</creatorcontrib><creatorcontrib>Yun, Yeonghun</creatorcontrib><creatorcontrib>Lee, Sangwook</creatorcontrib><creatorcontrib>Seo, You‐Hyun</creatorcontrib><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Han, Gill Sang</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><title>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</title><title>Advanced energy materials</title><description>Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability. The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2).</description><subject>Acrylamide</subject><subject>Airtightness</subject><subject>Circuits</subject><subject>Commercialization</subject><subject>cross‐linking</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Grain size</subject><subject>Lattice strain</subject><subject>Monomers</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polycrystals</subject><subject>Polymer matrix composites</subject><subject>Solar cells</subject><subject>Storage stability</subject><subject>Tensile strain</subject><subject>Titanium dioxide</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwkAQhhujiQS5et7Ec3G72-62R0JQSFBJ0PNm287qQtvF3aKpF3kEE9-QJ7EEgt6cy0wm_zeT__e8ywD3A4zJtYSq7BNMKCY8pCdeJ2BB6LM4xKfHmZJzr-fcArcVJgGmtON9Tio01_UazUzRlGD1h6y1qZBRaGiNc9vN11RXS8jRDKx5c0tdw3bzfVCjoSlXxrU7h5SxaKyfX4oGzWuZFoBklaORUjrTUNV_eDQ3hWxZKAp34Z0pWTjoHXrXe7oZPQ7H_vThdjIcTP2MRpz6PI0hVCSmLE7jkCVxa1qyLJeEpUpGLOWKM8hZnqqMUQJhSAKIWMJpChGJJe16V_u7K2te1-BqsTBrW7UvBWmjwJwzjltVf6_Kdt4tKLGyupS2EQEWu5zFLmdxzLkFkj3wrgto_lGLwej-7pf9AZ9LhPM</recordid><startdate>20240105</startdate><enddate>20240105</enddate><creator>Guo, He</creator><creator>Yoon, Geon Woo</creator><creator>Li, Zi Jia</creator><creator>Yun, Yeonghun</creator><creator>Lee, Sangwook</creator><creator>Seo, You‐Hyun</creator><creator>Jeon, Nam Joong</creator><creator>Han, Gill Sang</creator><creator>Jung, Hyun Suk</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7803-6930</orcidid></search><sort><creationdate>20240105</creationdate><title>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</title><author>Guo, He ; Yoon, Geon Woo ; Li, Zi Jia ; Yun, Yeonghun ; Lee, Sangwook ; Seo, You‐Hyun ; Jeon, Nam Joong ; Han, Gill Sang ; Jung, Hyun Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Airtightness</topic><topic>Circuits</topic><topic>Commercialization</topic><topic>cross‐linking</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Grain size</topic><topic>Lattice strain</topic><topic>Monomers</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polycrystals</topic><topic>Polymer matrix composites</topic><topic>Solar cells</topic><topic>Storage stability</topic><topic>Tensile strain</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, He</creatorcontrib><creatorcontrib>Yoon, Geon Woo</creatorcontrib><creatorcontrib>Li, Zi Jia</creatorcontrib><creatorcontrib>Yun, Yeonghun</creatorcontrib><creatorcontrib>Lee, Sangwook</creatorcontrib><creatorcontrib>Seo, You‐Hyun</creatorcontrib><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Han, Gill Sang</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, He</au><au>Yoon, Geon Woo</au><au>Li, Zi Jia</au><au>Yun, Yeonghun</au><au>Lee, Sangwook</au><au>Seo, You‐Hyun</au><au>Jeon, Nam Joong</au><au>Han, Gill Sang</au><au>Jung, Hyun Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2024-01-05</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability. The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302743</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7803-6930</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-01, Vol.14 (1), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2910077670
source Wiley Online Library Journals Frontfile Complete
subjects Acrylamide
Airtightness
Circuits
Commercialization
cross‐linking
Crystal defects
Crystal structure
Crystallization
Electron transport
Energy conversion efficiency
Grain size
Lattice strain
Monomers
perovskite solar cells
Perovskites
Photovoltaic cells
Polycrystals
Polymer matrix composites
Solar cells
Storage stability
Tensile strain
Titanium dioxide
title In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Polymerization%20of%20Cross%E2%80%90Linked%20Perovskite%E2%80%93Polymer%20Composites%20for%20Highly%20Stable%20and%20Efficient%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Guo,%20He&rft.date=2024-01-05&rft.volume=14&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302743&rft_dat=%3Cproquest_cross%3E2910077670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910077670&rft_id=info:pmid/&rfr_iscdi=true