In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells
Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in po...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2024-01, Vol.14 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 14 |
creator | Guo, He Yoon, Geon Woo Li, Zi Jia Yun, Yeonghun Lee, Sangwook Seo, You‐Hyun Jeon, Nam Joong Han, Gill Sang Jung, Hyun Suk |
description | Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability.
The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2). |
doi_str_mv | 10.1002/aenm.202302743 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2910077670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2910077670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</originalsourceid><addsrcrecordid>eNqFkMFOwkAQhhujiQS5et7Ec3G72-62R0JQSFBJ0PNm287qQtvF3aKpF3kEE9-QJ7EEgt6cy0wm_zeT__e8ywD3A4zJtYSq7BNMKCY8pCdeJ2BB6LM4xKfHmZJzr-fcArcVJgGmtON9Tio01_UazUzRlGD1h6y1qZBRaGiNc9vN11RXS8jRDKx5c0tdw3bzfVCjoSlXxrU7h5SxaKyfX4oGzWuZFoBklaORUjrTUNV_eDQ3hWxZKAp34Z0pWTjoHXrXe7oZPQ7H_vThdjIcTP2MRpz6PI0hVCSmLE7jkCVxa1qyLJeEpUpGLOWKM8hZnqqMUQJhSAKIWMJpChGJJe16V_u7K2te1-BqsTBrW7UvBWmjwJwzjltVf6_Kdt4tKLGyupS2EQEWu5zFLmdxzLkFkj3wrgto_lGLwej-7pf9AZ9LhPM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2910077670</pqid></control><display><type>article</type><title>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, He ; Yoon, Geon Woo ; Li, Zi Jia ; Yun, Yeonghun ; Lee, Sangwook ; Seo, You‐Hyun ; Jeon, Nam Joong ; Han, Gill Sang ; Jung, Hyun Suk</creator><creatorcontrib>Guo, He ; Yoon, Geon Woo ; Li, Zi Jia ; Yun, Yeonghun ; Lee, Sangwook ; Seo, You‐Hyun ; Jeon, Nam Joong ; Han, Gill Sang ; Jung, Hyun Suk</creatorcontrib><description>Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability.
The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202302743</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Acrylamide ; Airtightness ; Circuits ; Commercialization ; cross‐linking ; Crystal defects ; Crystal structure ; Crystallization ; Electron transport ; Energy conversion efficiency ; Grain size ; Lattice strain ; Monomers ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Polycrystals ; Polymer matrix composites ; Solar cells ; Storage stability ; Tensile strain ; Titanium dioxide</subject><ispartof>Advanced energy materials, 2024-01, Vol.14 (1), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</citedby><cites>FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</cites><orcidid>0000-0002-7803-6930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202302743$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202302743$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guo, He</creatorcontrib><creatorcontrib>Yoon, Geon Woo</creatorcontrib><creatorcontrib>Li, Zi Jia</creatorcontrib><creatorcontrib>Yun, Yeonghun</creatorcontrib><creatorcontrib>Lee, Sangwook</creatorcontrib><creatorcontrib>Seo, You‐Hyun</creatorcontrib><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Han, Gill Sang</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><title>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</title><title>Advanced energy materials</title><description>Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability.
The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2).</description><subject>Acrylamide</subject><subject>Airtightness</subject><subject>Circuits</subject><subject>Commercialization</subject><subject>cross‐linking</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Grain size</subject><subject>Lattice strain</subject><subject>Monomers</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Polycrystals</subject><subject>Polymer matrix composites</subject><subject>Solar cells</subject><subject>Storage stability</subject><subject>Tensile strain</subject><subject>Titanium dioxide</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwkAQhhujiQS5et7Ec3G72-62R0JQSFBJ0PNm287qQtvF3aKpF3kEE9-QJ7EEgt6cy0wm_zeT__e8ywD3A4zJtYSq7BNMKCY8pCdeJ2BB6LM4xKfHmZJzr-fcArcVJgGmtON9Tio01_UazUzRlGD1h6y1qZBRaGiNc9vN11RXS8jRDKx5c0tdw3bzfVCjoSlXxrU7h5SxaKyfX4oGzWuZFoBklaORUjrTUNV_eDQ3hWxZKAp34Z0pWTjoHXrXe7oZPQ7H_vThdjIcTP2MRpz6PI0hVCSmLE7jkCVxa1qyLJeEpUpGLOWKM8hZnqqMUQJhSAKIWMJpChGJJe16V_u7K2te1-BqsTBrW7UvBWmjwJwzjltVf6_Kdt4tKLGyupS2EQEWu5zFLmdxzLkFkj3wrgto_lGLwej-7pf9AZ9LhPM</recordid><startdate>20240105</startdate><enddate>20240105</enddate><creator>Guo, He</creator><creator>Yoon, Geon Woo</creator><creator>Li, Zi Jia</creator><creator>Yun, Yeonghun</creator><creator>Lee, Sangwook</creator><creator>Seo, You‐Hyun</creator><creator>Jeon, Nam Joong</creator><creator>Han, Gill Sang</creator><creator>Jung, Hyun Suk</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7803-6930</orcidid></search><sort><creationdate>20240105</creationdate><title>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</title><author>Guo, He ; Yoon, Geon Woo ; Li, Zi Jia ; Yun, Yeonghun ; Lee, Sangwook ; Seo, You‐Hyun ; Jeon, Nam Joong ; Han, Gill Sang ; Jung, Hyun Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3573-7b8e4f28368b84698100a6cda26bfa56b7f76ed6dbfc632e4421e56973be528a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acrylamide</topic><topic>Airtightness</topic><topic>Circuits</topic><topic>Commercialization</topic><topic>cross‐linking</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Grain size</topic><topic>Lattice strain</topic><topic>Monomers</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Polycrystals</topic><topic>Polymer matrix composites</topic><topic>Solar cells</topic><topic>Storage stability</topic><topic>Tensile strain</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, He</creatorcontrib><creatorcontrib>Yoon, Geon Woo</creatorcontrib><creatorcontrib>Li, Zi Jia</creatorcontrib><creatorcontrib>Yun, Yeonghun</creatorcontrib><creatorcontrib>Lee, Sangwook</creatorcontrib><creatorcontrib>Seo, You‐Hyun</creatorcontrib><creatorcontrib>Jeon, Nam Joong</creatorcontrib><creatorcontrib>Han, Gill Sang</creatorcontrib><creatorcontrib>Jung, Hyun Suk</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, He</au><au>Yoon, Geon Woo</au><au>Li, Zi Jia</au><au>Yun, Yeonghun</au><au>Lee, Sangwook</au><au>Seo, You‐Hyun</au><au>Jeon, Nam Joong</au><au>Han, Gill Sang</au><au>Jung, Hyun Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells</atitle><jtitle>Advanced energy materials</jtitle><date>2024-01-05</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Mixed‐halide perovskites have emerged as outstanding light absorbers that enable the fabrication of efficient solar cells; however, their instability hinders the commercialization of such systems. Grain‐boundary (GB) defects and lattice tensile strain are critical intrinsic‐instability factors in polycrystalline perovskite films. In this study, the light‐induced cross‐linking of acrylamide (Am) monomers with non‐crystalline perovskite films is used to fabricate highly efficient and stable perovskite solar cells (PSCs). The Am monomers induce the preferred crystal orientation in the polycrystalline perovskite films, enlarge the perovskite grain size, and cross‐link the perovskite grains. Additionally, the liquid properties of Am effectively releases lattice strain during perovskite‐film crystallization. The cross‐linked interfacial layer functions as an airtight wall that protects the perovskite film from water corrosion. Devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45% with an open‐circuit voltage (VOC) of 1.199 V, which, to date, is the highest VOC reported for hybrid PSCs with electron transport layers (ETLs) comprised of TiO2. Large‐area PSC modules fabricated using the proposed strategy show a power conversion efficiency of 20.31% (with a high fill factor of 77.1%) over an active area of 33 cm2, with excellent storage stability.
The acrylamide treatment before perovskite crystallization, and light‐induced cross‐linking (ABC) strategy can not only passivate defects between grain boundaries but also induce the preferred crystal orientation in polycrystalline perovskite films. Finally, devices fabricated using the proposed strategy show an excellent power conversion efficiency (PCE) of 24.45%, and large‐area perovskite solar cell modules show a PCE of 20.31% (33 cm2).</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202302743</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7803-6930</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2024-01, Vol.14 (1), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2910077670 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Acrylamide Airtightness Circuits Commercialization cross‐linking Crystal defects Crystal structure Crystallization Electron transport Energy conversion efficiency Grain size Lattice strain Monomers perovskite solar cells Perovskites Photovoltaic cells Polycrystals Polymer matrix composites Solar cells Storage stability Tensile strain Titanium dioxide |
title | In Situ Polymerization of Cross‐Linked Perovskite–Polymer Composites for Highly Stable and Efficient Perovskite Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Polymerization%20of%20Cross%E2%80%90Linked%20Perovskite%E2%80%93Polymer%20Composites%20for%20Highly%20Stable%20and%20Efficient%20Perovskite%20Solar%20Cells&rft.jtitle=Advanced%20energy%20materials&rft.au=Guo,%20He&rft.date=2024-01-05&rft.volume=14&rft.issue=1&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202302743&rft_dat=%3Cproquest_cross%3E2910077670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2910077670&rft_id=info:pmid/&rfr_iscdi=true |