Weak solvability and well-posedness of some fractional parabolic problems with vanishing initial datum

This paper tackles a class of nonlinear parabolic equations driven by the fractional p -Laplacian operator with a vanishing initial datum. Our primary aim is to investigate the well-posedness (existence and uniqueness) of solutions to the proposed model. Notably, we will establish two interesting re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2024-03, Vol.15 (1), Article 6
1. Verfasser: Charkaoui, Abderrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of pseudo-differential operators and applications
container_volume 15
creator Charkaoui, Abderrahim
description This paper tackles a class of nonlinear parabolic equations driven by the fractional p -Laplacian operator with a vanishing initial datum. Our primary aim is to investigate the well-posedness (existence and uniqueness) of solutions to the proposed model. Notably, we will establish two interesting results concerning the existence and uniqueness of weak solutions. The first result pertains to the scenario where the source term is independent of the solution. In this case, we demonstrate the existence and uniqueness of the solution via the classical monotone operator theory modulus vanishing initial datum. The second result deals with the case where the source term is nonlinear and strongly dependent on the solution. To establish the existence of a weak solution in this scenario, we will rely essentially on the use of Schaefer’s fixed point theorem and supplement our approach with some new technical estimates.
doi_str_mv 10.1007/s11868-023-00578-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2909669509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909669509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ad8720477979384a9cc2463aa394b3925d0316308463bcf59aec2a1db29fcc0c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWLR_wFXA9Wge80iWUnxBwY2iu3Ank2lTM5Mxmbb03xsd0Z13cy-X7xwOB6ELSq4oIdV1pFSUIiOMZ4QUlcjEEZrRsmSZlPLt-PcW9BTNY9yQNFxySvkMta8G3nH0bge1dXY8YOgbvDfOZYOPpulNjNi3iegMbgPo0foeHB4gQO2d1XgIvnami3hvxzXeQW_j2vYrbHs72kQ2MG67c3TSgotm_rPP0Mvd7fPiIVs-3T8ubpaZZhUZM2hExUheVbKSXOQgtWZ5yQG4zGsuWdEQTktORHrWui0kGM2ANjWTrdZE8zN0OfmmVB9bE0e18duQAkfFJJFlKQsiE8UmSgcfYzCtGoLtIBwUJeqrUjVVqlKl6rtSJZKIT6KY4H5lwp_1P6pP-Th6hw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909669509</pqid></control><display><type>article</type><title>Weak solvability and well-posedness of some fractional parabolic problems with vanishing initial datum</title><source>SpringerNature Journals</source><creator>Charkaoui, Abderrahim</creator><creatorcontrib>Charkaoui, Abderrahim</creatorcontrib><description>This paper tackles a class of nonlinear parabolic equations driven by the fractional p -Laplacian operator with a vanishing initial datum. Our primary aim is to investigate the well-posedness (existence and uniqueness) of solutions to the proposed model. Notably, we will establish two interesting results concerning the existence and uniqueness of weak solutions. The first result pertains to the scenario where the source term is independent of the solution. In this case, we demonstrate the existence and uniqueness of the solution via the classical monotone operator theory modulus vanishing initial datum. The second result deals with the case where the source term is nonlinear and strongly dependent on the solution. To establish the existence of a weak solution in this scenario, we will rely essentially on the use of Schaefer’s fixed point theorem and supplement our approach with some new technical estimates.</description><identifier>ISSN: 1662-9981</identifier><identifier>EISSN: 1662-999X</identifier><identifier>DOI: 10.1007/s11868-023-00578-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Fixed points (mathematics) ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Partial Differential Equations ; Uniqueness ; Well posed problems</subject><ispartof>Journal of pseudo-differential operators and applications, 2024-03, Vol.15 (1), Article 6</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ad8720477979384a9cc2463aa394b3925d0316308463bcf59aec2a1db29fcc0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11868-023-00578-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11868-023-00578-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Charkaoui, Abderrahim</creatorcontrib><title>Weak solvability and well-posedness of some fractional parabolic problems with vanishing initial datum</title><title>Journal of pseudo-differential operators and applications</title><addtitle>J. Pseudo-Differ. Oper. Appl</addtitle><description>This paper tackles a class of nonlinear parabolic equations driven by the fractional p -Laplacian operator with a vanishing initial datum. Our primary aim is to investigate the well-posedness (existence and uniqueness) of solutions to the proposed model. Notably, we will establish two interesting results concerning the existence and uniqueness of weak solutions. The first result pertains to the scenario where the source term is independent of the solution. In this case, we demonstrate the existence and uniqueness of the solution via the classical monotone operator theory modulus vanishing initial datum. The second result deals with the case where the source term is nonlinear and strongly dependent on the solution. To establish the existence of a weak solution in this scenario, we will rely essentially on the use of Schaefer’s fixed point theorem and supplement our approach with some new technical estimates.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Fixed points (mathematics)</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Partial Differential Equations</subject><subject>Uniqueness</subject><subject>Well posed problems</subject><issn>1662-9981</issn><issn>1662-999X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWLR_wFXA9Wge80iWUnxBwY2iu3Ank2lTM5Mxmbb03xsd0Z13cy-X7xwOB6ELSq4oIdV1pFSUIiOMZ4QUlcjEEZrRsmSZlPLt-PcW9BTNY9yQNFxySvkMta8G3nH0bge1dXY8YOgbvDfOZYOPpulNjNi3iegMbgPo0foeHB4gQO2d1XgIvnami3hvxzXeQW_j2vYrbHs72kQ2MG67c3TSgotm_rPP0Mvd7fPiIVs-3T8ubpaZZhUZM2hExUheVbKSXOQgtWZ5yQG4zGsuWdEQTktORHrWui0kGM2ANjWTrdZE8zN0OfmmVB9bE0e18duQAkfFJJFlKQsiE8UmSgcfYzCtGoLtIBwUJeqrUjVVqlKl6rtSJZKIT6KY4H5lwp_1P6pP-Th6hw</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Charkaoui, Abderrahim</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Weak solvability and well-posedness of some fractional parabolic problems with vanishing initial datum</title><author>Charkaoui, Abderrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ad8720477979384a9cc2463aa394b3925d0316308463bcf59aec2a1db29fcc0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Fixed points (mathematics)</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Partial Differential Equations</topic><topic>Uniqueness</topic><topic>Well posed problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Charkaoui, Abderrahim</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of pseudo-differential operators and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charkaoui, Abderrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak solvability and well-posedness of some fractional parabolic problems with vanishing initial datum</atitle><jtitle>Journal of pseudo-differential operators and applications</jtitle><stitle>J. Pseudo-Differ. Oper. Appl</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><artnum>6</artnum><issn>1662-9981</issn><eissn>1662-999X</eissn><abstract>This paper tackles a class of nonlinear parabolic equations driven by the fractional p -Laplacian operator with a vanishing initial datum. Our primary aim is to investigate the well-posedness (existence and uniqueness) of solutions to the proposed model. Notably, we will establish two interesting results concerning the existence and uniqueness of weak solutions. The first result pertains to the scenario where the source term is independent of the solution. In this case, we demonstrate the existence and uniqueness of the solution via the classical monotone operator theory modulus vanishing initial datum. The second result deals with the case where the source term is nonlinear and strongly dependent on the solution. To establish the existence of a weak solution in this scenario, we will rely essentially on the use of Schaefer’s fixed point theorem and supplement our approach with some new technical estimates.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11868-023-00578-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 1662-9981
ispartof Journal of pseudo-differential operators and applications, 2024-03, Vol.15 (1), Article 6
issn 1662-9981
1662-999X
language eng
recordid cdi_proquest_journals_2909669509
source SpringerNature Journals
subjects Algebra
Analysis
Applications of Mathematics
Fixed points (mathematics)
Functional Analysis
Mathematics
Mathematics and Statistics
Operator Theory
Partial Differential Equations
Uniqueness
Well posed problems
title Weak solvability and well-posedness of some fractional parabolic problems with vanishing initial datum
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20solvability%20and%20well-posedness%20of%20some%20fractional%20parabolic%20problems%20with%20vanishing%20initial%20datum&rft.jtitle=Journal%20of%20pseudo-differential%20operators%20and%20applications&rft.au=Charkaoui,%20Abderrahim&rft.date=2024-03-01&rft.volume=15&rft.issue=1&rft.artnum=6&rft.issn=1662-9981&rft.eissn=1662-999X&rft_id=info:doi/10.1007/s11868-023-00578-8&rft_dat=%3Cproquest_cross%3E2909669509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909669509&rft_id=info:pmid/&rfr_iscdi=true