Absolutely continuous mappings on doubling metric measure spaces

We consider Q -absolutely continuous mappings f : X → V between a doubling metric measure space X and a Banach space V . The relation between these mappings and Sobolev mappings f ∈ N 1 , p ( X ; V ) for p ≥ Q ≥ 1 is investigated. In particular, a locally Q -absolutely continuous mapping on an Ahlfo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Manuscripta mathematica 2024-01, Vol.173 (1-2), p.1-21
Hauptverfasser: Lahti, Panu, Zhou, Xiaodan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1-2
container_start_page 1
container_title Manuscripta mathematica
container_volume 173
creator Lahti, Panu
Zhou, Xiaodan
description We consider Q -absolutely continuous mappings f : X → V between a doubling metric measure space X and a Banach space V . The relation between these mappings and Sobolev mappings f ∈ N 1 , p ( X ; V ) for p ≥ Q ≥ 1 is investigated. In particular, a locally Q -absolutely continuous mapping on an Ahlfors Q -regular space is a continuous mapping in N loc 1 , Q ( X ; V ) , as well as differentiable almost everywhere in terms of Cheeger derivatives provided V satisfies the Radon-Nikodym property. Conversely, though a continuous Sobolev mapping f ∈ N loc 1 , Q ( X ; V ) is generally not locally Q -absolutely continuous, this implication holds if f is further assumed to be pseudomonotone. It follows that pseudomonotone mappings satisfying a relaxed quasiconformality condition are also Q -absolutely continuous.
doi_str_mv 10.1007/s00229-023-01460-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2909669194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909669194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-cc8a4a6fe1b365bc75504d8b848f632d4d621b4e721bad0bdfbc6a5bc11474983</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU8Fz9HJn6bpzWXRVVjwoueQpOnSpdvUpDnsfnqjFbx5mccwv_cGHkK3BO4JQPUQASitMVCGgXAB-HSGFoQzikkly3O0yPcSU0HIJbqKcQ-ZYhVboMeVib5Pk-uPhfXD1A3Jp1gc9Dh2wy4Wfigan0yfl-LgptDZLDqm4Io4auviNbpodR_dza8u0cfz0_v6BW_fNq_r1RZbJmHC1krNtWgdMUyUxlZlCbyRRnLZCkYb3ghKDHdVnroB07TGCp1BQnjFa8mW6G7OHYP_TC5Oau9TGPJLRWuohahJzTNFZ8oGH2NwrRpDd9DhqAio76bU3JTKTamfptQpm9hsihkedi78Rf_j-gJfQ2zr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909669194</pqid></control><display><type>article</type><title>Absolutely continuous mappings on doubling metric measure spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Lahti, Panu ; Zhou, Xiaodan</creator><creatorcontrib>Lahti, Panu ; Zhou, Xiaodan</creatorcontrib><description>We consider Q -absolutely continuous mappings f : X → V between a doubling metric measure space X and a Banach space V . The relation between these mappings and Sobolev mappings f ∈ N 1 , p ( X ; V ) for p ≥ Q ≥ 1 is investigated. In particular, a locally Q -absolutely continuous mapping on an Ahlfors Q -regular space is a continuous mapping in N loc 1 , Q ( X ; V ) , as well as differentiable almost everywhere in terms of Cheeger derivatives provided V satisfies the Radon-Nikodym property. Conversely, though a continuous Sobolev mapping f ∈ N loc 1 , Q ( X ; V ) is generally not locally Q -absolutely continuous, this implication holds if f is further assumed to be pseudomonotone. It follows that pseudomonotone mappings satisfying a relaxed quasiconformality condition are also Q -absolutely continuous.</description><identifier>ISSN: 0025-2611</identifier><identifier>EISSN: 1432-1785</identifier><identifier>DOI: 10.1007/s00229-023-01460-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebraic Geometry ; Banach spaces ; Calculus of Variations and Optimal Control; Optimization ; Geometry ; Lie Groups ; Mapping ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topological Groups</subject><ispartof>Manuscripta mathematica, 2024-01, Vol.173 (1-2), p.1-21</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c380t-cc8a4a6fe1b365bc75504d8b848f632d4d621b4e721bad0bdfbc6a5bc11474983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00229-023-01460-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00229-023-01460-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lahti, Panu</creatorcontrib><creatorcontrib>Zhou, Xiaodan</creatorcontrib><title>Absolutely continuous mappings on doubling metric measure spaces</title><title>Manuscripta mathematica</title><addtitle>manuscripta math</addtitle><description>We consider Q -absolutely continuous mappings f : X → V between a doubling metric measure space X and a Banach space V . The relation between these mappings and Sobolev mappings f ∈ N 1 , p ( X ; V ) for p ≥ Q ≥ 1 is investigated. In particular, a locally Q -absolutely continuous mapping on an Ahlfors Q -regular space is a continuous mapping in N loc 1 , Q ( X ; V ) , as well as differentiable almost everywhere in terms of Cheeger derivatives provided V satisfies the Radon-Nikodym property. Conversely, though a continuous Sobolev mapping f ∈ N loc 1 , Q ( X ; V ) is generally not locally Q -absolutely continuous, this implication holds if f is further assumed to be pseudomonotone. It follows that pseudomonotone mappings satisfying a relaxed quasiconformality condition are also Q -absolutely continuous.</description><subject>Algebraic Geometry</subject><subject>Banach spaces</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Geometry</subject><subject>Lie Groups</subject><subject>Mapping</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topological Groups</subject><issn>0025-2611</issn><issn>1432-1785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU8Fz9HJn6bpzWXRVVjwoueQpOnSpdvUpDnsfnqjFbx5mccwv_cGHkK3BO4JQPUQASitMVCGgXAB-HSGFoQzikkly3O0yPcSU0HIJbqKcQ-ZYhVboMeVib5Pk-uPhfXD1A3Jp1gc9Dh2wy4Wfigan0yfl-LgptDZLDqm4Io4auviNbpodR_dza8u0cfz0_v6BW_fNq_r1RZbJmHC1krNtWgdMUyUxlZlCbyRRnLZCkYb3ghKDHdVnroB07TGCp1BQnjFa8mW6G7OHYP_TC5Oau9TGPJLRWuohahJzTNFZ8oGH2NwrRpDd9DhqAio76bU3JTKTamfptQpm9hsihkedi78Rf_j-gJfQ2zr</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lahti, Panu</creator><creator>Zhou, Xiaodan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>Absolutely continuous mappings on doubling metric measure spaces</title><author>Lahti, Panu ; Zhou, Xiaodan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-cc8a4a6fe1b365bc75504d8b848f632d4d621b4e721bad0bdfbc6a5bc11474983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebraic Geometry</topic><topic>Banach spaces</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Geometry</topic><topic>Lie Groups</topic><topic>Mapping</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topological Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahti, Panu</creatorcontrib><creatorcontrib>Zhou, Xiaodan</creatorcontrib><collection>CrossRef</collection><jtitle>Manuscripta mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahti, Panu</au><au>Zhou, Xiaodan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absolutely continuous mappings on doubling metric measure spaces</atitle><jtitle>Manuscripta mathematica</jtitle><stitle>manuscripta math</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>173</volume><issue>1-2</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>0025-2611</issn><eissn>1432-1785</eissn><abstract>We consider Q -absolutely continuous mappings f : X → V between a doubling metric measure space X and a Banach space V . The relation between these mappings and Sobolev mappings f ∈ N 1 , p ( X ; V ) for p ≥ Q ≥ 1 is investigated. In particular, a locally Q -absolutely continuous mapping on an Ahlfors Q -regular space is a continuous mapping in N loc 1 , Q ( X ; V ) , as well as differentiable almost everywhere in terms of Cheeger derivatives provided V satisfies the Radon-Nikodym property. Conversely, though a continuous Sobolev mapping f ∈ N loc 1 , Q ( X ; V ) is generally not locally Q -absolutely continuous, this implication holds if f is further assumed to be pseudomonotone. It follows that pseudomonotone mappings satisfying a relaxed quasiconformality condition are also Q -absolutely continuous.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00229-023-01460-z</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-2611
ispartof Manuscripta mathematica, 2024-01, Vol.173 (1-2), p.1-21
issn 0025-2611
1432-1785
language eng
recordid cdi_proquest_journals_2909669194
source Springer Nature - Complete Springer Journals
subjects Algebraic Geometry
Banach spaces
Calculus of Variations and Optimal Control
Optimization
Geometry
Lie Groups
Mapping
Mathematics
Mathematics and Statistics
Number Theory
Topological Groups
title Absolutely continuous mappings on doubling metric measure spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absolutely%20continuous%20mappings%20on%20doubling%20metric%20measure%20spaces&rft.jtitle=Manuscripta%20mathematica&rft.au=Lahti,%20Panu&rft.date=2024-01-01&rft.volume=173&rft.issue=1-2&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=0025-2611&rft.eissn=1432-1785&rft_id=info:doi/10.1007/s00229-023-01460-z&rft_dat=%3Cproquest_cross%3E2909669194%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909669194&rft_id=info:pmid/&rfr_iscdi=true