Intelligent LSTM (iLSTM)-Security Model for HetIoT
Distributed denial-of-service (DDoS) is the most recent lethal threat, and several industrial and academic researchers are concentrating on defending the heterogeneous IoT (HetIoT) infrastructure from it. The research presents a novel intelligent security system using deep learning (DL)-based long s...
Gespeichert in:
Veröffentlicht in: | Wireless personal communications 2023-11, Vol.133 (1), p.323-350 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 350 |
---|---|
container_issue | 1 |
container_start_page | 323 |
container_title | Wireless personal communications |
container_volume | 133 |
creator | Mahadik, Shalaka S. Pawar, Pranav M. Muthalagu, Raja Prasad, Neeli Rashmi Mantri, Dnyaneshwar |
description | Distributed denial-of-service (DDoS) is the most recent lethal threat, and several industrial and academic researchers are concentrating on defending the heterogeneous IoT (HetIoT) infrastructure from it. The research presents a novel intelligent security system using deep learning (DL)-based long short-term memory (LSTM) techniques, i.e., the iLSTM-Security model, for the HetIoT network. The research addressed the steps needed to prepare the data after complete data analysis and feature extraction using the principal component analysis (PCA) method. The research also highlighted the asymptotic time complexity analysis for the proposed iLSTM-Security model. The proposed iLSTM-Security model efficiently identifies and nullifies the different DDoS threats. The research analyzes binary (2 class) and multiclass classification (7 class and 13 class) for optimal DDoS threat detection. The proposed iLSTM-Security model’s efficacy is assessed against two state-of-the-art DL approaches, and the findings show that the proposed iLSTM-Security model surpasses them. The proposed iLSTM-Security model effectively recognizes different DDoS threats with an accuracy rate of 99.98% for 2 classes, 98.8% for 7 classes, and 99.97% for 13 class classifications. Additionally, the research assesses the individual accuracy of 7 classes and 13 classes with state-of-the-artwork. Further, the research reveals that the proposed iLSTM-Security model is lighter, simpler, and considerably less complicated than the existing state-of-the-art models. |
doi_str_mv | 10.1007/s11277-023-10769-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2909668286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909668286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b1fa7c66b9a2b4efac31d1fdc73270a1846367b64150714d08a5cca2024f8b633</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4GrAjS6iLy_TZLKUYm2hxUUruAuZTFKmjDM1mS7696aO4M7Vhcc998Eh5JbBIwOQT5ExlJICcspACkXlGRmxiURa8PzjnIxAoaICGV6Sqxh3AAlTOCK4aHvXNPXWtX22XG9W2X19ige6dvYQ6v6YrbrKNZnvQjZ3_aLbXJMLb5robn5zTN5nL5vpnC7fXhfT5yW1nKmelswbaYUolcEyd96kc8V8ZSVHCYYVueBCliJnE5Asr6AwE2sNAua-KAXnY3I37O5D93Vwsde77hDa9FKjAiVEgYVILRxaNnQxBuf1PtSfJhw1A31yowc3OrnRP260TBAfoJjK7daFv-l_qG9XtWQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909668286</pqid></control><display><type>article</type><title>Intelligent LSTM (iLSTM)-Security Model for HetIoT</title><source>SpringerNature Journals</source><creator>Mahadik, Shalaka S. ; Pawar, Pranav M. ; Muthalagu, Raja ; Prasad, Neeli Rashmi ; Mantri, Dnyaneshwar</creator><creatorcontrib>Mahadik, Shalaka S. ; Pawar, Pranav M. ; Muthalagu, Raja ; Prasad, Neeli Rashmi ; Mantri, Dnyaneshwar</creatorcontrib><description>Distributed denial-of-service (DDoS) is the most recent lethal threat, and several industrial and academic researchers are concentrating on defending the heterogeneous IoT (HetIoT) infrastructure from it. The research presents a novel intelligent security system using deep learning (DL)-based long short-term memory (LSTM) techniques, i.e., the iLSTM-Security model, for the HetIoT network. The research addressed the steps needed to prepare the data after complete data analysis and feature extraction using the principal component analysis (PCA) method. The research also highlighted the asymptotic time complexity analysis for the proposed iLSTM-Security model. The proposed iLSTM-Security model efficiently identifies and nullifies the different DDoS threats. The research analyzes binary (2 class) and multiclass classification (7 class and 13 class) for optimal DDoS threat detection. The proposed iLSTM-Security model’s efficacy is assessed against two state-of-the-art DL approaches, and the findings show that the proposed iLSTM-Security model surpasses them. The proposed iLSTM-Security model effectively recognizes different DDoS threats with an accuracy rate of 99.98% for 2 classes, 98.8% for 7 classes, and 99.97% for 13 class classifications. Additionally, the research assesses the individual accuracy of 7 classes and 13 classes with state-of-the-artwork. Further, the research reveals that the proposed iLSTM-Security model is lighter, simpler, and considerably less complicated than the existing state-of-the-art models.</description><identifier>ISSN: 0929-6212</identifier><identifier>EISSN: 1572-834X</identifier><identifier>DOI: 10.1007/s11277-023-10769-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Art works ; Asymptotic methods ; Classification ; Communications Engineering ; Computer Communication Networks ; Data analysis ; Denial of service attacks ; Engineering ; Feature extraction ; Machine learning ; Networks ; Principal components analysis ; Security systems ; Signal,Image and Speech Processing ; Threat evaluation</subject><ispartof>Wireless personal communications, 2023-11, Vol.133 (1), p.323-350</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b1fa7c66b9a2b4efac31d1fdc73270a1846367b64150714d08a5cca2024f8b633</citedby><cites>FETCH-LOGICAL-c319t-b1fa7c66b9a2b4efac31d1fdc73270a1846367b64150714d08a5cca2024f8b633</cites><orcidid>0000-0001-8193-7388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11277-023-10769-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11277-023-10769-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mahadik, Shalaka S.</creatorcontrib><creatorcontrib>Pawar, Pranav M.</creatorcontrib><creatorcontrib>Muthalagu, Raja</creatorcontrib><creatorcontrib>Prasad, Neeli Rashmi</creatorcontrib><creatorcontrib>Mantri, Dnyaneshwar</creatorcontrib><title>Intelligent LSTM (iLSTM)-Security Model for HetIoT</title><title>Wireless personal communications</title><addtitle>Wireless Pers Commun</addtitle><description>Distributed denial-of-service (DDoS) is the most recent lethal threat, and several industrial and academic researchers are concentrating on defending the heterogeneous IoT (HetIoT) infrastructure from it. The research presents a novel intelligent security system using deep learning (DL)-based long short-term memory (LSTM) techniques, i.e., the iLSTM-Security model, for the HetIoT network. The research addressed the steps needed to prepare the data after complete data analysis and feature extraction using the principal component analysis (PCA) method. The research also highlighted the asymptotic time complexity analysis for the proposed iLSTM-Security model. The proposed iLSTM-Security model efficiently identifies and nullifies the different DDoS threats. The research analyzes binary (2 class) and multiclass classification (7 class and 13 class) for optimal DDoS threat detection. The proposed iLSTM-Security model’s efficacy is assessed against two state-of-the-art DL approaches, and the findings show that the proposed iLSTM-Security model surpasses them. The proposed iLSTM-Security model effectively recognizes different DDoS threats with an accuracy rate of 99.98% for 2 classes, 98.8% for 7 classes, and 99.97% for 13 class classifications. Additionally, the research assesses the individual accuracy of 7 classes and 13 classes with state-of-the-artwork. Further, the research reveals that the proposed iLSTM-Security model is lighter, simpler, and considerably less complicated than the existing state-of-the-art models.</description><subject>Accuracy</subject><subject>Art works</subject><subject>Asymptotic methods</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Data analysis</subject><subject>Denial of service attacks</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Principal components analysis</subject><subject>Security systems</subject><subject>Signal,Image and Speech Processing</subject><subject>Threat evaluation</subject><issn>0929-6212</issn><issn>1572-834X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEURYMoWKs_4GrAjS6iLy_TZLKUYm2hxUUruAuZTFKmjDM1mS7696aO4M7Vhcc998Eh5JbBIwOQT5ExlJICcspACkXlGRmxiURa8PzjnIxAoaICGV6Sqxh3AAlTOCK4aHvXNPXWtX22XG9W2X19ige6dvYQ6v6YrbrKNZnvQjZ3_aLbXJMLb5robn5zTN5nL5vpnC7fXhfT5yW1nKmelswbaYUolcEyd96kc8V8ZSVHCYYVueBCliJnE5Asr6AwE2sNAua-KAXnY3I37O5D93Vwsde77hDa9FKjAiVEgYVILRxaNnQxBuf1PtSfJhw1A31yowc3OrnRP260TBAfoJjK7daFv-l_qG9XtWQ8</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Mahadik, Shalaka S.</creator><creator>Pawar, Pranav M.</creator><creator>Muthalagu, Raja</creator><creator>Prasad, Neeli Rashmi</creator><creator>Mantri, Dnyaneshwar</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8193-7388</orcidid></search><sort><creationdate>20231101</creationdate><title>Intelligent LSTM (iLSTM)-Security Model for HetIoT</title><author>Mahadik, Shalaka S. ; Pawar, Pranav M. ; Muthalagu, Raja ; Prasad, Neeli Rashmi ; Mantri, Dnyaneshwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b1fa7c66b9a2b4efac31d1fdc73270a1846367b64150714d08a5cca2024f8b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Art works</topic><topic>Asymptotic methods</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Data analysis</topic><topic>Denial of service attacks</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Principal components analysis</topic><topic>Security systems</topic><topic>Signal,Image and Speech Processing</topic><topic>Threat evaluation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahadik, Shalaka S.</creatorcontrib><creatorcontrib>Pawar, Pranav M.</creatorcontrib><creatorcontrib>Muthalagu, Raja</creatorcontrib><creatorcontrib>Prasad, Neeli Rashmi</creatorcontrib><creatorcontrib>Mantri, Dnyaneshwar</creatorcontrib><collection>CrossRef</collection><jtitle>Wireless personal communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahadik, Shalaka S.</au><au>Pawar, Pranav M.</au><au>Muthalagu, Raja</au><au>Prasad, Neeli Rashmi</au><au>Mantri, Dnyaneshwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent LSTM (iLSTM)-Security Model for HetIoT</atitle><jtitle>Wireless personal communications</jtitle><stitle>Wireless Pers Commun</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>133</volume><issue>1</issue><spage>323</spage><epage>350</epage><pages>323-350</pages><issn>0929-6212</issn><eissn>1572-834X</eissn><abstract>Distributed denial-of-service (DDoS) is the most recent lethal threat, and several industrial and academic researchers are concentrating on defending the heterogeneous IoT (HetIoT) infrastructure from it. The research presents a novel intelligent security system using deep learning (DL)-based long short-term memory (LSTM) techniques, i.e., the iLSTM-Security model, for the HetIoT network. The research addressed the steps needed to prepare the data after complete data analysis and feature extraction using the principal component analysis (PCA) method. The research also highlighted the asymptotic time complexity analysis for the proposed iLSTM-Security model. The proposed iLSTM-Security model efficiently identifies and nullifies the different DDoS threats. The research analyzes binary (2 class) and multiclass classification (7 class and 13 class) for optimal DDoS threat detection. The proposed iLSTM-Security model’s efficacy is assessed against two state-of-the-art DL approaches, and the findings show that the proposed iLSTM-Security model surpasses them. The proposed iLSTM-Security model effectively recognizes different DDoS threats with an accuracy rate of 99.98% for 2 classes, 98.8% for 7 classes, and 99.97% for 13 class classifications. Additionally, the research assesses the individual accuracy of 7 classes and 13 classes with state-of-the-artwork. Further, the research reveals that the proposed iLSTM-Security model is lighter, simpler, and considerably less complicated than the existing state-of-the-art models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11277-023-10769-7</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-8193-7388</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0929-6212 |
ispartof | Wireless personal communications, 2023-11, Vol.133 (1), p.323-350 |
issn | 0929-6212 1572-834X |
language | eng |
recordid | cdi_proquest_journals_2909668286 |
source | SpringerNature Journals |
subjects | Accuracy Art works Asymptotic methods Classification Communications Engineering Computer Communication Networks Data analysis Denial of service attacks Engineering Feature extraction Machine learning Networks Principal components analysis Security systems Signal,Image and Speech Processing Threat evaluation |
title | Intelligent LSTM (iLSTM)-Security Model for HetIoT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20LSTM%20(iLSTM)-Security%20Model%20for%20HetIoT&rft.jtitle=Wireless%20personal%20communications&rft.au=Mahadik,%20Shalaka%20S.&rft.date=2023-11-01&rft.volume=133&rft.issue=1&rft.spage=323&rft.epage=350&rft.pages=323-350&rft.issn=0929-6212&rft.eissn=1572-834X&rft_id=info:doi/10.1007/s11277-023-10769-7&rft_dat=%3Cproquest_cross%3E2909668286%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909668286&rft_id=info:pmid/&rfr_iscdi=true |