Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms

Skin lesions are classified in benign or malignant. Among the malignant, melanoma is a very aggressive cancer and the major cause of deaths. So, early diagnosis of skin cancer is very desired. In the last few years, there is a growing interest in computer aided diagnostic (CAD) using most image and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Loss, Flavio P, da Cunha, Pedro H, Rocha, Matheus B, Madson Poltronieri Zanoni, de Lima, Leandro M, Isadora Tavares Nascimento, Rezende, Isabella, Canuto, Tania R P, de Paula Vieira, Luciana, Rossoni, Renan, Santos, Maria C S, Patricia Lyra Frasson, Romão, Wanderson, Filgueiras, Paulo R, Krohling, Renato A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Loss, Flavio P
da Cunha, Pedro H
Rocha, Matheus B
Madson Poltronieri Zanoni
de Lima, Leandro M
Isadora Tavares Nascimento
Rezende, Isabella
Canuto, Tania R P
de Paula Vieira, Luciana
Rossoni, Renan
Santos, Maria C S
Patricia Lyra Frasson
Romão, Wanderson
Filgueiras, Paulo R
Krohling, Renato A
description Skin lesions are classified in benign or malignant. Among the malignant, melanoma is a very aggressive cancer and the major cause of deaths. So, early diagnosis of skin cancer is very desired. In the last few years, there is a growing interest in computer aided diagnostic (CAD) using most image and clinical data of the lesion. These sources of information present limitations due to their inability to provide information of the molecular structure of the lesion. NIR spectroscopy may provide an alternative source of information to automated CAD of skin lesions. The most commonly used techniques and classification algorithms used in spectroscopy are Principal Component Analysis (PCA), Partial Least Squares - Discriminant Analysis (PLS-DA), and Support Vector Machines (SVM). Nonetheless, there is a growing interest in applying the modern techniques of machine and deep learning (MDL) to spectroscopy. One of the main limitations to apply MDL to spectroscopy is the lack of public datasets. Since there is no public dataset of NIR spectral data to skin lesions, as far as we know, an effort has been made and a new dataset named NIR-SC-UFES, has been collected, annotated and analyzed generating the gold-standard for classification of NIR spectral data to skin cancer. Next, the machine learning algorithms XGBoost, CatBoost, LightGBM, 1D-convolutional neural network (1D-CNN) were investigated to classify cancer and non-cancer skin lesions. Experimental results indicate the best performance obtained by LightGBM with pre-processing using standard normal variate (SNV), feature extraction providing values of 0.839 for balanced accuracy, 0.851 for recall, 0.852 for precision, and 0.850 for F-score. The obtained results indicate the first steps in CAD of skin lesions aiming the automated triage of patients with skin lesions in vivo using NIR spectral data.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2909332722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909332722</sourcerecordid><originalsourceid>FETCH-proquest_journals_29093327223</originalsourceid><addsrcrecordid>eNqNi8EKwjAQRIMgKNp_WPAsxI1aPYuiFw_qXUJM29SardlU8O9toR_gaYZ58wZijEot5psl4kgkzKWUEtcprlZqLJ7Xp_NgtDc2wMPp3BM7hoadz-F8ugDX1sRAbKj-wkNHDZQBd1Jl2ZFnaOvHfah3XtoUztuW6uC7QVc5BReLF0_FMNMV26TPiZgd9rfdcV4HejeW472kJvgW3XErt0phiqj-e_0AatNJXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909332722</pqid></control><display><type>article</type><title>Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms</title><source>Free E- Journals</source><creator>Loss, Flavio P ; da Cunha, Pedro H ; Rocha, Matheus B ; Madson Poltronieri Zanoni ; de Lima, Leandro M ; Isadora Tavares Nascimento ; Rezende, Isabella ; Canuto, Tania R P ; de Paula Vieira, Luciana ; Rossoni, Renan ; Santos, Maria C S ; Patricia Lyra Frasson ; Romão, Wanderson ; Filgueiras, Paulo R ; Krohling, Renato A</creator><creatorcontrib>Loss, Flavio P ; da Cunha, Pedro H ; Rocha, Matheus B ; Madson Poltronieri Zanoni ; de Lima, Leandro M ; Isadora Tavares Nascimento ; Rezende, Isabella ; Canuto, Tania R P ; de Paula Vieira, Luciana ; Rossoni, Renan ; Santos, Maria C S ; Patricia Lyra Frasson ; Romão, Wanderson ; Filgueiras, Paulo R ; Krohling, Renato A</creatorcontrib><description>Skin lesions are classified in benign or malignant. Among the malignant, melanoma is a very aggressive cancer and the major cause of deaths. So, early diagnosis of skin cancer is very desired. In the last few years, there is a growing interest in computer aided diagnostic (CAD) using most image and clinical data of the lesion. These sources of information present limitations due to their inability to provide information of the molecular structure of the lesion. NIR spectroscopy may provide an alternative source of information to automated CAD of skin lesions. The most commonly used techniques and classification algorithms used in spectroscopy are Principal Component Analysis (PCA), Partial Least Squares - Discriminant Analysis (PLS-DA), and Support Vector Machines (SVM). Nonetheless, there is a growing interest in applying the modern techniques of machine and deep learning (MDL) to spectroscopy. One of the main limitations to apply MDL to spectroscopy is the lack of public datasets. Since there is no public dataset of NIR spectral data to skin lesions, as far as we know, an effort has been made and a new dataset named NIR-SC-UFES, has been collected, annotated and analyzed generating the gold-standard for classification of NIR spectral data to skin cancer. Next, the machine learning algorithms XGBoost, CatBoost, LightGBM, 1D-convolutional neural network (1D-CNN) were investigated to classify cancer and non-cancer skin lesions. Experimental results indicate the best performance obtained by LightGBM with pre-processing using standard normal variate (SNV), feature extraction providing values of 0.839 for balanced accuracy, 0.851 for recall, 0.852 for precision, and 0.850 for F-score. The obtained results indicate the first steps in CAD of skin lesions aiming the automated triage of patients with skin lesions in vivo using NIR spectral data.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Cancer ; Classification ; Datasets ; Deep learning ; Diagnosis ; Discriminant analysis ; Feature extraction ; Information sources ; Lesions ; Machine learning ; Molecular structure ; Principal components analysis ; Skin cancer ; Spectrum analysis ; Support vector machines</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Loss, Flavio P</creatorcontrib><creatorcontrib>da Cunha, Pedro H</creatorcontrib><creatorcontrib>Rocha, Matheus B</creatorcontrib><creatorcontrib>Madson Poltronieri Zanoni</creatorcontrib><creatorcontrib>de Lima, Leandro M</creatorcontrib><creatorcontrib>Isadora Tavares Nascimento</creatorcontrib><creatorcontrib>Rezende, Isabella</creatorcontrib><creatorcontrib>Canuto, Tania R P</creatorcontrib><creatorcontrib>de Paula Vieira, Luciana</creatorcontrib><creatorcontrib>Rossoni, Renan</creatorcontrib><creatorcontrib>Santos, Maria C S</creatorcontrib><creatorcontrib>Patricia Lyra Frasson</creatorcontrib><creatorcontrib>Romão, Wanderson</creatorcontrib><creatorcontrib>Filgueiras, Paulo R</creatorcontrib><creatorcontrib>Krohling, Renato A</creatorcontrib><title>Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms</title><title>arXiv.org</title><description>Skin lesions are classified in benign or malignant. Among the malignant, melanoma is a very aggressive cancer and the major cause of deaths. So, early diagnosis of skin cancer is very desired. In the last few years, there is a growing interest in computer aided diagnostic (CAD) using most image and clinical data of the lesion. These sources of information present limitations due to their inability to provide information of the molecular structure of the lesion. NIR spectroscopy may provide an alternative source of information to automated CAD of skin lesions. The most commonly used techniques and classification algorithms used in spectroscopy are Principal Component Analysis (PCA), Partial Least Squares - Discriminant Analysis (PLS-DA), and Support Vector Machines (SVM). Nonetheless, there is a growing interest in applying the modern techniques of machine and deep learning (MDL) to spectroscopy. One of the main limitations to apply MDL to spectroscopy is the lack of public datasets. Since there is no public dataset of NIR spectral data to skin lesions, as far as we know, an effort has been made and a new dataset named NIR-SC-UFES, has been collected, annotated and analyzed generating the gold-standard for classification of NIR spectral data to skin cancer. Next, the machine learning algorithms XGBoost, CatBoost, LightGBM, 1D-convolutional neural network (1D-CNN) were investigated to classify cancer and non-cancer skin lesions. Experimental results indicate the best performance obtained by LightGBM with pre-processing using standard normal variate (SNV), feature extraction providing values of 0.839 for balanced accuracy, 0.851 for recall, 0.852 for precision, and 0.850 for F-score. The obtained results indicate the first steps in CAD of skin lesions aiming the automated triage of patients with skin lesions in vivo using NIR spectral data.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Cancer</subject><subject>Classification</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Information sources</subject><subject>Lesions</subject><subject>Machine learning</subject><subject>Molecular structure</subject><subject>Principal components analysis</subject><subject>Skin cancer</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8EKwjAQRIMgKNp_WPAsxI1aPYuiFw_qXUJM29SardlU8O9toR_gaYZ58wZijEot5psl4kgkzKWUEtcprlZqLJ7Xp_NgtDc2wMPp3BM7hoadz-F8ugDX1sRAbKj-wkNHDZQBd1Jl2ZFnaOvHfah3XtoUztuW6uC7QVc5BReLF0_FMNMV26TPiZgd9rfdcV4HejeW472kJvgW3XErt0phiqj-e_0AatNJXg</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Loss, Flavio P</creator><creator>da Cunha, Pedro H</creator><creator>Rocha, Matheus B</creator><creator>Madson Poltronieri Zanoni</creator><creator>de Lima, Leandro M</creator><creator>Isadora Tavares Nascimento</creator><creator>Rezende, Isabella</creator><creator>Canuto, Tania R P</creator><creator>de Paula Vieira, Luciana</creator><creator>Rossoni, Renan</creator><creator>Santos, Maria C S</creator><creator>Patricia Lyra Frasson</creator><creator>Romão, Wanderson</creator><creator>Filgueiras, Paulo R</creator><creator>Krohling, Renato A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240102</creationdate><title>Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms</title><author>Loss, Flavio P ; da Cunha, Pedro H ; Rocha, Matheus B ; Madson Poltronieri Zanoni ; de Lima, Leandro M ; Isadora Tavares Nascimento ; Rezende, Isabella ; Canuto, Tania R P ; de Paula Vieira, Luciana ; Rossoni, Renan ; Santos, Maria C S ; Patricia Lyra Frasson ; Romão, Wanderson ; Filgueiras, Paulo R ; Krohling, Renato A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29093327223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Cancer</topic><topic>Classification</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Information sources</topic><topic>Lesions</topic><topic>Machine learning</topic><topic>Molecular structure</topic><topic>Principal components analysis</topic><topic>Skin cancer</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Loss, Flavio P</creatorcontrib><creatorcontrib>da Cunha, Pedro H</creatorcontrib><creatorcontrib>Rocha, Matheus B</creatorcontrib><creatorcontrib>Madson Poltronieri Zanoni</creatorcontrib><creatorcontrib>de Lima, Leandro M</creatorcontrib><creatorcontrib>Isadora Tavares Nascimento</creatorcontrib><creatorcontrib>Rezende, Isabella</creatorcontrib><creatorcontrib>Canuto, Tania R P</creatorcontrib><creatorcontrib>de Paula Vieira, Luciana</creatorcontrib><creatorcontrib>Rossoni, Renan</creatorcontrib><creatorcontrib>Santos, Maria C S</creatorcontrib><creatorcontrib>Patricia Lyra Frasson</creatorcontrib><creatorcontrib>Romão, Wanderson</creatorcontrib><creatorcontrib>Filgueiras, Paulo R</creatorcontrib><creatorcontrib>Krohling, Renato A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loss, Flavio P</au><au>da Cunha, Pedro H</au><au>Rocha, Matheus B</au><au>Madson Poltronieri Zanoni</au><au>de Lima, Leandro M</au><au>Isadora Tavares Nascimento</au><au>Rezende, Isabella</au><au>Canuto, Tania R P</au><au>de Paula Vieira, Luciana</au><au>Rossoni, Renan</au><au>Santos, Maria C S</au><au>Patricia Lyra Frasson</au><au>Romão, Wanderson</au><au>Filgueiras, Paulo R</au><au>Krohling, Renato A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms</atitle><jtitle>arXiv.org</jtitle><date>2024-01-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Skin lesions are classified in benign or malignant. Among the malignant, melanoma is a very aggressive cancer and the major cause of deaths. So, early diagnosis of skin cancer is very desired. In the last few years, there is a growing interest in computer aided diagnostic (CAD) using most image and clinical data of the lesion. These sources of information present limitations due to their inability to provide information of the molecular structure of the lesion. NIR spectroscopy may provide an alternative source of information to automated CAD of skin lesions. The most commonly used techniques and classification algorithms used in spectroscopy are Principal Component Analysis (PCA), Partial Least Squares - Discriminant Analysis (PLS-DA), and Support Vector Machines (SVM). Nonetheless, there is a growing interest in applying the modern techniques of machine and deep learning (MDL) to spectroscopy. One of the main limitations to apply MDL to spectroscopy is the lack of public datasets. Since there is no public dataset of NIR spectral data to skin lesions, as far as we know, an effort has been made and a new dataset named NIR-SC-UFES, has been collected, annotated and analyzed generating the gold-standard for classification of NIR spectral data to skin cancer. Next, the machine learning algorithms XGBoost, CatBoost, LightGBM, 1D-convolutional neural network (1D-CNN) were investigated to classify cancer and non-cancer skin lesions. Experimental results indicate the best performance obtained by LightGBM with pre-processing using standard normal variate (SNV), feature extraction providing values of 0.839 for balanced accuracy, 0.851 for recall, 0.852 for precision, and 0.850 for F-score. The obtained results indicate the first steps in CAD of skin lesions aiming the automated triage of patients with skin lesions in vivo using NIR spectral data.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2909332722
source Free E- Journals
subjects Algorithms
Artificial neural networks
Automation
Cancer
Classification
Datasets
Deep learning
Diagnosis
Discriminant analysis
Feature extraction
Information sources
Lesions
Machine learning
Molecular structure
Principal components analysis
Skin cancer
Spectrum analysis
Support vector machines
title Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Skin%20cancer%20diagnosis%20using%20NIR%20spectroscopy%20data%20of%20skin%20lesions%20in%20vivo%20using%20machine%20learning%20algorithms&rft.jtitle=arXiv.org&rft.au=Loss,%20Flavio%20P&rft.date=2024-01-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2909332722%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909332722&rft_id=info:pmid/&rfr_iscdi=true