Comparing regression curves: an L1-point of view
In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their L 1 -distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstr...
Gespeichert in:
Veröffentlicht in: | Annals of the Institute of Statistical Mathematics 2024-02, Vol.76 (1), p.159-183 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 183 |
---|---|
container_issue | 1 |
container_start_page | 159 |
container_title | Annals of the Institute of Statistical Mathematics |
container_volume | 76 |
creator | Bastian, Patrick Dette, Holger Koletzko, Lukas Möllenhoff, Kathrin |
description | In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their
L
1
-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study. |
doi_str_mv | 10.1007/s10463-023-00880-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2909154323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909154323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-73301f55d1e2ad4519c7d3e3be054cc661f543605e99db217e78aff6a257bbf53</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-hk0jStN1n8Bwte9BzSdrJ0cZuadFf89mat4M3DMDDz3hvmx9ilgGsBoG-igKKUHDAVVBXw6ohlQmnkNSg8ZhkAApdpcsrOYtwAgESJGYOl34429MM6D7QOFGPvh7zdhT3F29wO-Urw0ffDlHuX73v6PGcnzr5HuvjtC_b2cP-6fOKrl8fn5d2KtwgwcS0lCKdUJwhtVyhRt7qTJBsCVbRtWaZlIUtQVNddg0KTrqxzpUWlm8YpuWBXc-4Y_MeO4mQ2fheGdNJgDbVIbpRJhbOqDT7GQM6Mod_a8GUEmAMZM5MxiYz5IWOqZJKzKY6Hxyn8Rf_j-gYoKWRL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909154323</pqid></control><display><type>article</type><title>Comparing regression curves: an L1-point of view</title><source>2022 ECC(Springer)</source><creator>Bastian, Patrick ; Dette, Holger ; Koletzko, Lukas ; Möllenhoff, Kathrin</creator><creatorcontrib>Bastian, Patrick ; Dette, Holger ; Koletzko, Lukas ; Möllenhoff, Kathrin</creatorcontrib><description>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their
L
1
-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-023-00880-8</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Asymptotic methods ; Confidence intervals ; Economics ; Equivalence ; Finance ; Insurance ; Management ; Mathematics ; Mathematics and Statistics ; Statistical analysis ; Statistical tests ; Statistics ; Statistics for Business</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2024-02, Vol.76 (1), p.159-183</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-73301f55d1e2ad4519c7d3e3be054cc661f543605e99db217e78aff6a257bbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-023-00880-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-023-00880-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bastian, Patrick</creatorcontrib><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Koletzko, Lukas</creatorcontrib><creatorcontrib>Möllenhoff, Kathrin</creatorcontrib><title>Comparing regression curves: an L1-point of view</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their
L
1
-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</description><subject>Asymptotic methods</subject><subject>Confidence intervals</subject><subject>Economics</subject><subject>Equivalence</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-hk0jStN1n8Bwte9BzSdrJ0cZuadFf89mat4M3DMDDz3hvmx9ilgGsBoG-igKKUHDAVVBXw6ohlQmnkNSg8ZhkAApdpcsrOYtwAgESJGYOl34429MM6D7QOFGPvh7zdhT3F29wO-Urw0ffDlHuX73v6PGcnzr5HuvjtC_b2cP-6fOKrl8fn5d2KtwgwcS0lCKdUJwhtVyhRt7qTJBsCVbRtWaZlIUtQVNddg0KTrqxzpUWlm8YpuWBXc-4Y_MeO4mQ2fheGdNJgDbVIbpRJhbOqDT7GQM6Mod_a8GUEmAMZM5MxiYz5IWOqZJKzKY6Hxyn8Rf_j-gYoKWRL</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bastian, Patrick</creator><creator>Dette, Holger</creator><creator>Koletzko, Lukas</creator><creator>Möllenhoff, Kathrin</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240201</creationdate><title>Comparing regression curves: an L1-point of view</title><author>Bastian, Patrick ; Dette, Holger ; Koletzko, Lukas ; Möllenhoff, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-73301f55d1e2ad4519c7d3e3be054cc661f543605e99db217e78aff6a257bbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Confidence intervals</topic><topic>Economics</topic><topic>Equivalence</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastian, Patrick</creatorcontrib><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Koletzko, Lukas</creatorcontrib><creatorcontrib>Möllenhoff, Kathrin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastian, Patrick</au><au>Dette, Holger</au><au>Koletzko, Lukas</au><au>Möllenhoff, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing regression curves: an L1-point of view</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>76</volume><issue>1</issue><spage>159</spage><epage>183</epage><pages>159-183</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their
L
1
-distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-023-00880-8</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-3157 |
ispartof | Annals of the Institute of Statistical Mathematics, 2024-02, Vol.76 (1), p.159-183 |
issn | 0020-3157 1572-9052 |
language | eng |
recordid | cdi_proquest_journals_2909154323 |
source | 2022 ECC(Springer) |
subjects | Asymptotic methods Confidence intervals Economics Equivalence Finance Insurance Management Mathematics Mathematics and Statistics Statistical analysis Statistical tests Statistics Statistics for Business |
title | Comparing regression curves: an L1-point of view |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20regression%20curves:%20an%20L1-point%20of%20view&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Bastian,%20Patrick&rft.date=2024-02-01&rft.volume=76&rft.issue=1&rft.spage=159&rft.epage=183&rft.pages=159-183&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-023-00880-8&rft_dat=%3Cproquest_cross%3E2909154323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909154323&rft_id=info:pmid/&rfr_iscdi=true |