Comparing regression curves: an L1-point of view

In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their L 1 -distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of the Institute of Statistical Mathematics 2024-02, Vol.76 (1), p.159-183
Hauptverfasser: Bastian, Patrick, Dette, Holger, Koletzko, Lukas, Möllenhoff, Kathrin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 183
container_issue 1
container_start_page 159
container_title Annals of the Institute of Statistical Mathematics
container_volume 76
creator Bastian, Patrick
Dette, Holger
Koletzko, Lukas
Möllenhoff, Kathrin
description In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their L 1 -distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.
doi_str_mv 10.1007/s10463-023-00880-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2909154323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2909154323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-73301f55d1e2ad4519c7d3e3be054cc661f543605e99db217e78aff6a257bbf53</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMoWFe_gKeC5-hk0jStN1n8Bwte9BzSdrJ0cZuadFf89mat4M3DMDDz3hvmx9ilgGsBoG-igKKUHDAVVBXw6ohlQmnkNSg8ZhkAApdpcsrOYtwAgESJGYOl34429MM6D7QOFGPvh7zdhT3F29wO-Urw0ffDlHuX73v6PGcnzr5HuvjtC_b2cP-6fOKrl8fn5d2KtwgwcS0lCKdUJwhtVyhRt7qTJBsCVbRtWaZlIUtQVNddg0KTrqxzpUWlm8YpuWBXc-4Y_MeO4mQ2fheGdNJgDbVIbpRJhbOqDT7GQM6Mod_a8GUEmAMZM5MxiYz5IWOqZJKzKY6Hxyn8Rf_j-gYoKWRL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2909154323</pqid></control><display><type>article</type><title>Comparing regression curves: an L1-point of view</title><source>2022 ECC(Springer)</source><creator>Bastian, Patrick ; Dette, Holger ; Koletzko, Lukas ; Möllenhoff, Kathrin</creator><creatorcontrib>Bastian, Patrick ; Dette, Holger ; Koletzko, Lukas ; Möllenhoff, Kathrin</creatorcontrib><description>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their L 1 -distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</description><identifier>ISSN: 0020-3157</identifier><identifier>EISSN: 1572-9052</identifier><identifier>DOI: 10.1007/s10463-023-00880-8</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Asymptotic methods ; Confidence intervals ; Economics ; Equivalence ; Finance ; Insurance ; Management ; Mathematics ; Mathematics and Statistics ; Statistical analysis ; Statistical tests ; Statistics ; Statistics for Business</subject><ispartof>Annals of the Institute of Statistical Mathematics, 2024-02, Vol.76 (1), p.159-183</ispartof><rights>The Institute of Statistical Mathematics, Tokyo 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-73301f55d1e2ad4519c7d3e3be054cc661f543605e99db217e78aff6a257bbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10463-023-00880-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10463-023-00880-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Bastian, Patrick</creatorcontrib><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Koletzko, Lukas</creatorcontrib><creatorcontrib>Möllenhoff, Kathrin</creatorcontrib><title>Comparing regression curves: an L1-point of view</title><title>Annals of the Institute of Statistical Mathematics</title><addtitle>Ann Inst Stat Math</addtitle><description>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their L 1 -distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</description><subject>Asymptotic methods</subject><subject>Confidence intervals</subject><subject>Economics</subject><subject>Equivalence</subject><subject>Finance</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Statistics</subject><subject>Statistics for Business</subject><issn>0020-3157</issn><issn>1572-9052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMoWFe_gKeC5-hk0jStN1n8Bwte9BzSdrJ0cZuadFf89mat4M3DMDDz3hvmx9ilgGsBoG-igKKUHDAVVBXw6ohlQmnkNSg8ZhkAApdpcsrOYtwAgESJGYOl34429MM6D7QOFGPvh7zdhT3F29wO-Urw0ffDlHuX73v6PGcnzr5HuvjtC_b2cP-6fOKrl8fn5d2KtwgwcS0lCKdUJwhtVyhRt7qTJBsCVbRtWaZlIUtQVNddg0KTrqxzpUWlm8YpuWBXc-4Y_MeO4mQ2fheGdNJgDbVIbpRJhbOqDT7GQM6Mod_a8GUEmAMZM5MxiYz5IWOqZJKzKY6Hxyn8Rf_j-gYoKWRL</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Bastian, Patrick</creator><creator>Dette, Holger</creator><creator>Koletzko, Lukas</creator><creator>Möllenhoff, Kathrin</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240201</creationdate><title>Comparing regression curves: an L1-point of view</title><author>Bastian, Patrick ; Dette, Holger ; Koletzko, Lukas ; Möllenhoff, Kathrin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-73301f55d1e2ad4519c7d3e3be054cc661f543605e99db217e78aff6a257bbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Confidence intervals</topic><topic>Economics</topic><topic>Equivalence</topic><topic>Finance</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Statistics</topic><topic>Statistics for Business</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastian, Patrick</creatorcontrib><creatorcontrib>Dette, Holger</creatorcontrib><creatorcontrib>Koletzko, Lukas</creatorcontrib><creatorcontrib>Möllenhoff, Kathrin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Annals of the Institute of Statistical Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastian, Patrick</au><au>Dette, Holger</au><au>Koletzko, Lukas</au><au>Möllenhoff, Kathrin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing regression curves: an L1-point of view</atitle><jtitle>Annals of the Institute of Statistical Mathematics</jtitle><stitle>Ann Inst Stat Math</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>76</volume><issue>1</issue><spage>159</spage><epage>183</epage><pages>159-183</pages><issn>0020-3157</issn><eissn>1572-9052</eissn><abstract>In this paper, we compare two regression curves by measuring their difference by the area between the two curves, represented by their L 1 -distance. We develop asymptotic confidence intervals for this measure and statistical tests to investigate the similarity/equivalence of the two curves. Bootstrap methodology specifically designed for equivalence testing is developed to obtain procedures with good finite sample properties and its consistency is rigorously proved. The finite sample properties are investigated by means of a small simulation study.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10463-023-00880-8</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-3157
ispartof Annals of the Institute of Statistical Mathematics, 2024-02, Vol.76 (1), p.159-183
issn 0020-3157
1572-9052
language eng
recordid cdi_proquest_journals_2909154323
source 2022 ECC(Springer)
subjects Asymptotic methods
Confidence intervals
Economics
Equivalence
Finance
Insurance
Management
Mathematics
Mathematics and Statistics
Statistical analysis
Statistical tests
Statistics
Statistics for Business
title Comparing regression curves: an L1-point of view
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A57%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20regression%20curves:%20an%20L1-point%20of%20view&rft.jtitle=Annals%20of%20the%20Institute%20of%20Statistical%20Mathematics&rft.au=Bastian,%20Patrick&rft.date=2024-02-01&rft.volume=76&rft.issue=1&rft.spage=159&rft.epage=183&rft.pages=159-183&rft.issn=0020-3157&rft.eissn=1572-9052&rft_id=info:doi/10.1007/s10463-023-00880-8&rft_dat=%3Cproquest_cross%3E2909154323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2909154323&rft_id=info:pmid/&rfr_iscdi=true