Electrochemically exfoliated covalent organic frameworks for improved photocatalytic hydrogen evolution

Covalent organic frameworks (COFs) have recently shown great prospects for their photocatalytic applications in solar-to-hydrogen conversion. Nevertheless, most of the COFs were synthesized as crystalline bulk powders, impeding the exposure of surface catalytically active sites. Developing a noninva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-01, Vol.12 (2), p.1292-1299
Hauptverfasser: Wang, Ting, Zhang, Ruijuan, Zhai, Pengda, Li, Mingjie, Liu, Xinying, Li, Chaoxu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Covalent organic frameworks (COFs) have recently shown great prospects for their photocatalytic applications in solar-to-hydrogen conversion. Nevertheless, most of the COFs were synthesized as crystalline bulk powders, impeding the exposure of surface catalytically active sites. Developing a noninvasive and expedient route to exfoliate COFs in liquids still remains a great challenge. Herein, two typical 1,3,5-tri(thiophen-2-yl)benzene (TTB)-based COFs (one possesses non-donor–acceptor constitution, denoted as TTB-PB, while the other possesses donor–acceptor constitution, denoted as TTB-PT) were synthesized via Schiff-base condensation reactions. Subsequently, these bulk COFs were exfoliated via a facile electrochemical strategy in aqueous systems. The obtained exfoliated COFs can not only facilitate photo-triggered exciton dissociation but also afford more accessible active sites and enhanced hydrophilicity. Consequently, the exfoliated COFs exhibited much higher photocatalytic capabilities for H 2 evolution from water in sharp contrast to their unexfoliated precursors. It is to be noted that the exfoliated donor–acceptor COFs achieved a maximum H 2 evolution rate of 27.24 mmol h −1 g −1 , which is superior to that of the exfoliated non-donor–acceptor COF ( i.e. , 9.86 mmol h −1 g −1 ), and also ranks at the top of the state-of-the-art thiophen-based COF photocatalysts in the literature. This work enriches the fabrication approach of COF exfoliation. Furthermore, utilizing the synergetic strategy of aqueous electrochemical exfoliation and suitable molecular design, TTB-based COFs demonstrate promising photocatalytic activity.
ISSN:2050-7488
2050-7496
DOI:10.1039/D3TA06312G