Iterative Physical Optics for Radar Scattering Predictions

The iterative physical optics (IPO) method is applied to compute the radar cross section of electrically large and realistically complex targets. The method is based on iterative refinement of the first-order physical optics currents to include multiple interactions up to a specified order. Unlike o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Computational Electromagnetics Society journal 2009-04, Vol.24 (2), p.241
Hauptverfasser: Burkholder, Robert J, Tokgöz, Çağatay, Reddy, C J, Coburn, William O
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 241
container_title Applied Computational Electromagnetics Society journal
container_volume 24
creator Burkholder, Robert J
Tokgöz, Çağatay
Reddy, C J
Coburn, William O
description The iterative physical optics (IPO) method is applied to compute the radar cross section of electrically large and realistically complex targets. The method is based on iterative refinement of the first-order physical optics currents to include multiple interactions up to a specified order. Unlike other high-frequency asymptotic methods, no ray tracing is required, and spurious diffraction effects from non-physical shadow boundaries are avoided. Numerical results are presented to demonstrate convergence, accuracy, efficiency and robustness.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2908984470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908984470</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-4b1ac307a079642ec75ebd6a6ccc5faa7751c749ba2a408aa15151d7ec1a0dca3</originalsourceid><addsrcrecordid>eNotjUtLAzEUhYMoWKv_IeA6kEySuYk7KT4KhRYf63LnJqMpZWZMUsF_74ByFudbHL5zxhbKGy0sKHU-s7RGGOfgkl2VcpBSOw3tgt2ta8xY03fku8-fkgiPfDvVRIX3Y-YvGDDzV8I6z9LwwXc5hkQ1jUO5Zhc9Hku8-e8le398eFs9i832ab2634hJOV2F6RSSloASfGuaSGBjF1psicj2iABWERjfYYNGOkRl5wSIpFAGQr1kt3_eKY9fp1jq_jCe8jBf7hsvnXfGgNS_PTpE6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908984470</pqid></control><display><type>article</type><title>Iterative Physical Optics for Radar Scattering Predictions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Burkholder, Robert J ; Tokgöz, Çağatay ; Reddy, C J ; Coburn, William O</creator><creatorcontrib>Burkholder, Robert J ; Tokgöz, Çağatay ; Reddy, C J ; Coburn, William O</creatorcontrib><description>The iterative physical optics (IPO) method is applied to compute the radar cross section of electrically large and realistically complex targets. The method is based on iterative refinement of the first-order physical optics currents to include multiple interactions up to a specified order. Unlike other high-frequency asymptotic methods, no ray tracing is required, and spurious diffraction effects from non-physical shadow boundaries are avoided. Numerical results are presented to demonstrate convergence, accuracy, efficiency and robustness.</description><identifier>ISSN: 1054-4887</identifier><identifier>EISSN: 1943-5711</identifier><language>eng</language><publisher>Pisa: River Publishers</publisher><subject>Asymptotic methods ; Iterative methods ; Physical optics ; Radar cross sections ; Radar scattering ; Ray tracing ; Robustness (mathematics)</subject><ispartof>Applied Computational Electromagnetics Society journal, 2009-04, Vol.24 (2), p.241</ispartof><rights>2009. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2908984470?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,21388,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Burkholder, Robert J</creatorcontrib><creatorcontrib>Tokgöz, Çağatay</creatorcontrib><creatorcontrib>Reddy, C J</creatorcontrib><creatorcontrib>Coburn, William O</creatorcontrib><title>Iterative Physical Optics for Radar Scattering Predictions</title><title>Applied Computational Electromagnetics Society journal</title><description>The iterative physical optics (IPO) method is applied to compute the radar cross section of electrically large and realistically complex targets. The method is based on iterative refinement of the first-order physical optics currents to include multiple interactions up to a specified order. Unlike other high-frequency asymptotic methods, no ray tracing is required, and spurious diffraction effects from non-physical shadow boundaries are avoided. Numerical results are presented to demonstrate convergence, accuracy, efficiency and robustness.</description><subject>Asymptotic methods</subject><subject>Iterative methods</subject><subject>Physical optics</subject><subject>Radar cross sections</subject><subject>Radar scattering</subject><subject>Ray tracing</subject><subject>Robustness (mathematics)</subject><issn>1054-4887</issn><issn>1943-5711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotjUtLAzEUhYMoWKv_IeA6kEySuYk7KT4KhRYf63LnJqMpZWZMUsF_74ByFudbHL5zxhbKGy0sKHU-s7RGGOfgkl2VcpBSOw3tgt2ta8xY03fku8-fkgiPfDvVRIX3Y-YvGDDzV8I6z9LwwXc5hkQ1jUO5Zhc9Hku8-e8le398eFs9i832ab2634hJOV2F6RSSloASfGuaSGBjF1psicj2iABWERjfYYNGOkRl5wSIpFAGQr1kt3_eKY9fp1jq_jCe8jBf7hsvnXfGgNS_PTpE6w</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Burkholder, Robert J</creator><creator>Tokgöz, Çağatay</creator><creator>Reddy, C J</creator><creator>Coburn, William O</creator><general>River Publishers</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20090401</creationdate><title>Iterative Physical Optics for Radar Scattering Predictions</title><author>Burkholder, Robert J ; Tokgöz, Çağatay ; Reddy, C J ; Coburn, William O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-4b1ac307a079642ec75ebd6a6ccc5faa7751c749ba2a408aa15151d7ec1a0dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Asymptotic methods</topic><topic>Iterative methods</topic><topic>Physical optics</topic><topic>Radar cross sections</topic><topic>Radar scattering</topic><topic>Ray tracing</topic><topic>Robustness (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Burkholder, Robert J</creatorcontrib><creatorcontrib>Tokgöz, Çağatay</creatorcontrib><creatorcontrib>Reddy, C J</creatorcontrib><creatorcontrib>Coburn, William O</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Applied Computational Electromagnetics Society journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burkholder, Robert J</au><au>Tokgöz, Çağatay</au><au>Reddy, C J</au><au>Coburn, William O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative Physical Optics for Radar Scattering Predictions</atitle><jtitle>Applied Computational Electromagnetics Society journal</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>24</volume><issue>2</issue><spage>241</spage><pages>241-</pages><issn>1054-4887</issn><eissn>1943-5711</eissn><abstract>The iterative physical optics (IPO) method is applied to compute the radar cross section of electrically large and realistically complex targets. The method is based on iterative refinement of the first-order physical optics currents to include multiple interactions up to a specified order. Unlike other high-frequency asymptotic methods, no ray tracing is required, and spurious diffraction effects from non-physical shadow boundaries are avoided. Numerical results are presented to demonstrate convergence, accuracy, efficiency and robustness.</abstract><cop>Pisa</cop><pub>River Publishers</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-4887
ispartof Applied Computational Electromagnetics Society journal, 2009-04, Vol.24 (2), p.241
issn 1054-4887
1943-5711
language eng
recordid cdi_proquest_journals_2908984470
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Asymptotic methods
Iterative methods
Physical optics
Radar cross sections
Radar scattering
Ray tracing
Robustness (mathematics)
title Iterative Physical Optics for Radar Scattering Predictions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20Physical%20Optics%20for%20Radar%20Scattering%20Predictions&rft.jtitle=Applied%20Computational%20Electromagnetics%20Society%20journal&rft.au=Burkholder,%20Robert%20J&rft.date=2009-04-01&rft.volume=24&rft.issue=2&rft.spage=241&rft.pages=241-&rft.issn=1054-4887&rft.eissn=1943-5711&rft_id=info:doi/&rft_dat=%3Cproquest%3E2908984470%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908984470&rft_id=info:pmid/&rfr_iscdi=true