Superionic Silver Halide Solid Electrolyte: Dielectric Property and Iontronic Memtransistor Application for Bioinspired Computing

Technology like high‐level parallel information processing and storage in the brain remains a dream to the researchers using conventional solid‐state electronics. Here, a robust thin film bilayer superionic dielectric of poly(ethylene oxide) (PEO) and rubidium silver iodide (RbAg4I5) is developed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-01, Vol.34 (1), p.n/a
Hauptverfasser: Mukherjee, Arka, Mohanan, Kannan Udaya, Sagar, Srikrishna, Das, Bikas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Advanced functional materials
container_volume 34
creator Mukherjee, Arka
Mohanan, Kannan Udaya
Sagar, Srikrishna
Das, Bikas C.
description Technology like high‐level parallel information processing and storage in the brain remains a dream to the researchers using conventional solid‐state electronics. Here, a robust thin film bilayer superionic dielectric of poly(ethylene oxide) (PEO) and rubidium silver iodide (RbAg4I5) is developed to fabricate solid‐state iontronic synaptic memtransistors, which can serve as the basic building blocks for the hardware‐implementation of neuromorphic computing. X‐ray photoelectron spectroscopy and impedance measurements precisely confirm the stoichiometric composition of RbAg4I5 and dielectric nature combining with a PEO layer, respectively. The superionic bilayer PEO/RbAg4I5 gating effectively modulates the channel conductance analogously and displays memtransistor functionality. Interestingly, the transfer curves depict a colossal hysteresis yielding negative differential transconductance of peak‐to‐valley ratio up to 5 × 103 after the gate‐controlled resistive switching. Systematic electrical characterizations reveal a variety of synaptic behaviors, including the inhibitory postsynaptic current, paired‐pulse depression, and potentiation/depression curve. Finally, an artificial neural network for off‐chip digit recognition is simulated to assess the performance of the device for the neuromorphic application and achieved a test accuracy of 95.94% on the Modified National Institute of Standards and Technology dataset. A robust solid‐state iontronic synaptic memtransistor is developed using a bilayer thin‐film dielectric of poly(ethylene oxide) and superionic rubidium silver iodide (RbAg4I5), which can serve as the basic building blocks for neuromorphic computing hardware‐implementation. The transfer curves of this device depict a colossal hysteresis of resistive switching and yield an interesting signature of negative differential transconductance.
doi_str_mv 10.1002/adfm.202304228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2908982103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908982103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4118-f7fafa76918bf459b62b4d90d6ce1471f9c4f2564a53aecaaf7f96f42afa3f2f3</originalsourceid><addsrcrecordid>eNqFkM9LwzAYhoMoOKdXzwHPm0matY23uR9usKEwBW8hSxPJaJuapEqP_udmTubR0_d98DzvBy8A1xgNMULkVhS6GhJEEkQJyU9AD6c4HSSI5KfHHb-egwvvdwjhLEtoD3xt2kY5Y2sj4caUH8rBhShNoeDGxgFnpZLB2bIL6g5Ojfo5I_vkbPRCB0VdwKWtI7OPWKsqOFF744N1cNw0pZEixHio431vrKl9Y5wq4MRWTRtM_XYJzrQovbr6nX3wMp89TxaD1ePDcjJeDSTFOB_oTAstspThfKvpiG1TsqUFQ0UqFaYZ1kxSTUYpFaNEKClEFFiqKYlWoolO-uDmkNs4-94qH_jOtq6OLzlhKGc5wSiJ1PBASWe9d0rzxplKuI5jxPc1833N_FhzFNhB-DSl6v6h-Xg6X_-53wUphRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908982103</pqid></control><display><type>article</type><title>Superionic Silver Halide Solid Electrolyte: Dielectric Property and Iontronic Memtransistor Application for Bioinspired Computing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mukherjee, Arka ; Mohanan, Kannan Udaya ; Sagar, Srikrishna ; Das, Bikas C.</creator><creatorcontrib>Mukherjee, Arka ; Mohanan, Kannan Udaya ; Sagar, Srikrishna ; Das, Bikas C.</creatorcontrib><description>Technology like high‐level parallel information processing and storage in the brain remains a dream to the researchers using conventional solid‐state electronics. Here, a robust thin film bilayer superionic dielectric of poly(ethylene oxide) (PEO) and rubidium silver iodide (RbAg4I5) is developed to fabricate solid‐state iontronic synaptic memtransistors, which can serve as the basic building blocks for the hardware‐implementation of neuromorphic computing. X‐ray photoelectron spectroscopy and impedance measurements precisely confirm the stoichiometric composition of RbAg4I5 and dielectric nature combining with a PEO layer, respectively. The superionic bilayer PEO/RbAg4I5 gating effectively modulates the channel conductance analogously and displays memtransistor functionality. Interestingly, the transfer curves depict a colossal hysteresis yielding negative differential transconductance of peak‐to‐valley ratio up to 5 × 103 after the gate‐controlled resistive switching. Systematic electrical characterizations reveal a variety of synaptic behaviors, including the inhibitory postsynaptic current, paired‐pulse depression, and potentiation/depression curve. Finally, an artificial neural network for off‐chip digit recognition is simulated to assess the performance of the device for the neuromorphic application and achieved a test accuracy of 95.94% on the Modified National Institute of Standards and Technology dataset. A robust solid‐state iontronic synaptic memtransistor is developed using a bilayer thin‐film dielectric of poly(ethylene oxide) and superionic rubidium silver iodide (RbAg4I5), which can serve as the basic building blocks for neuromorphic computing hardware‐implementation. The transfer curves of this device depict a colossal hysteresis of resistive switching and yield an interesting signature of negative differential transconductance.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202304228</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Bilayers ; Data processing ; Dielectric properties ; Ethylene oxide ; iontronics ; negative differential transconductance ; Neuromorphic computing ; pattern recognition ; Photoelectrons ; Polyethylene oxide ; Rubidium ; rubidium silver iodide ; Silver halides ; Solid electrolytes ; synaptic weight ; Thin films ; Transconductance</subject><ispartof>Advanced functional materials, 2024-01, Vol.34 (1), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4118-f7fafa76918bf459b62b4d90d6ce1471f9c4f2564a53aecaaf7f96f42afa3f2f3</citedby><cites>FETCH-LOGICAL-c4118-f7fafa76918bf459b62b4d90d6ce1471f9c4f2564a53aecaaf7f96f42afa3f2f3</cites><orcidid>0000-0002-4750-0542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202304228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202304228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mukherjee, Arka</creatorcontrib><creatorcontrib>Mohanan, Kannan Udaya</creatorcontrib><creatorcontrib>Sagar, Srikrishna</creatorcontrib><creatorcontrib>Das, Bikas C.</creatorcontrib><title>Superionic Silver Halide Solid Electrolyte: Dielectric Property and Iontronic Memtransistor Application for Bioinspired Computing</title><title>Advanced functional materials</title><description>Technology like high‐level parallel information processing and storage in the brain remains a dream to the researchers using conventional solid‐state electronics. Here, a robust thin film bilayer superionic dielectric of poly(ethylene oxide) (PEO) and rubidium silver iodide (RbAg4I5) is developed to fabricate solid‐state iontronic synaptic memtransistors, which can serve as the basic building blocks for the hardware‐implementation of neuromorphic computing. X‐ray photoelectron spectroscopy and impedance measurements precisely confirm the stoichiometric composition of RbAg4I5 and dielectric nature combining with a PEO layer, respectively. The superionic bilayer PEO/RbAg4I5 gating effectively modulates the channel conductance analogously and displays memtransistor functionality. Interestingly, the transfer curves depict a colossal hysteresis yielding negative differential transconductance of peak‐to‐valley ratio up to 5 × 103 after the gate‐controlled resistive switching. Systematic electrical characterizations reveal a variety of synaptic behaviors, including the inhibitory postsynaptic current, paired‐pulse depression, and potentiation/depression curve. Finally, an artificial neural network for off‐chip digit recognition is simulated to assess the performance of the device for the neuromorphic application and achieved a test accuracy of 95.94% on the Modified National Institute of Standards and Technology dataset. A robust solid‐state iontronic synaptic memtransistor is developed using a bilayer thin‐film dielectric of poly(ethylene oxide) and superionic rubidium silver iodide (RbAg4I5), which can serve as the basic building blocks for neuromorphic computing hardware‐implementation. The transfer curves of this device depict a colossal hysteresis of resistive switching and yield an interesting signature of negative differential transconductance.</description><subject>Artificial neural networks</subject><subject>Bilayers</subject><subject>Data processing</subject><subject>Dielectric properties</subject><subject>Ethylene oxide</subject><subject>iontronics</subject><subject>negative differential transconductance</subject><subject>Neuromorphic computing</subject><subject>pattern recognition</subject><subject>Photoelectrons</subject><subject>Polyethylene oxide</subject><subject>Rubidium</subject><subject>rubidium silver iodide</subject><subject>Silver halides</subject><subject>Solid electrolytes</subject><subject>synaptic weight</subject><subject>Thin films</subject><subject>Transconductance</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAYhoMoOKdXzwHPm0matY23uR9usKEwBW8hSxPJaJuapEqP_udmTubR0_d98DzvBy8A1xgNMULkVhS6GhJEEkQJyU9AD6c4HSSI5KfHHb-egwvvdwjhLEtoD3xt2kY5Y2sj4caUH8rBhShNoeDGxgFnpZLB2bIL6g5Ojfo5I_vkbPRCB0VdwKWtI7OPWKsqOFF744N1cNw0pZEixHio431vrKl9Y5wq4MRWTRtM_XYJzrQovbr6nX3wMp89TxaD1ePDcjJeDSTFOB_oTAstspThfKvpiG1TsqUFQ0UqFaYZ1kxSTUYpFaNEKClEFFiqKYlWoolO-uDmkNs4-94qH_jOtq6OLzlhKGc5wSiJ1PBASWe9d0rzxplKuI5jxPc1833N_FhzFNhB-DSl6v6h-Xg6X_-53wUphRg</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Mukherjee, Arka</creator><creator>Mohanan, Kannan Udaya</creator><creator>Sagar, Srikrishna</creator><creator>Das, Bikas C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4750-0542</orcidid></search><sort><creationdate>20240101</creationdate><title>Superionic Silver Halide Solid Electrolyte: Dielectric Property and Iontronic Memtransistor Application for Bioinspired Computing</title><author>Mukherjee, Arka ; Mohanan, Kannan Udaya ; Sagar, Srikrishna ; Das, Bikas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4118-f7fafa76918bf459b62b4d90d6ce1471f9c4f2564a53aecaaf7f96f42afa3f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Bilayers</topic><topic>Data processing</topic><topic>Dielectric properties</topic><topic>Ethylene oxide</topic><topic>iontronics</topic><topic>negative differential transconductance</topic><topic>Neuromorphic computing</topic><topic>pattern recognition</topic><topic>Photoelectrons</topic><topic>Polyethylene oxide</topic><topic>Rubidium</topic><topic>rubidium silver iodide</topic><topic>Silver halides</topic><topic>Solid electrolytes</topic><topic>synaptic weight</topic><topic>Thin films</topic><topic>Transconductance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Arka</creatorcontrib><creatorcontrib>Mohanan, Kannan Udaya</creatorcontrib><creatorcontrib>Sagar, Srikrishna</creatorcontrib><creatorcontrib>Das, Bikas C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Arka</au><au>Mohanan, Kannan Udaya</au><au>Sagar, Srikrishna</au><au>Das, Bikas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superionic Silver Halide Solid Electrolyte: Dielectric Property and Iontronic Memtransistor Application for Bioinspired Computing</atitle><jtitle>Advanced functional materials</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Technology like high‐level parallel information processing and storage in the brain remains a dream to the researchers using conventional solid‐state electronics. Here, a robust thin film bilayer superionic dielectric of poly(ethylene oxide) (PEO) and rubidium silver iodide (RbAg4I5) is developed to fabricate solid‐state iontronic synaptic memtransistors, which can serve as the basic building blocks for the hardware‐implementation of neuromorphic computing. X‐ray photoelectron spectroscopy and impedance measurements precisely confirm the stoichiometric composition of RbAg4I5 and dielectric nature combining with a PEO layer, respectively. The superionic bilayer PEO/RbAg4I5 gating effectively modulates the channel conductance analogously and displays memtransistor functionality. Interestingly, the transfer curves depict a colossal hysteresis yielding negative differential transconductance of peak‐to‐valley ratio up to 5 × 103 after the gate‐controlled resistive switching. Systematic electrical characterizations reveal a variety of synaptic behaviors, including the inhibitory postsynaptic current, paired‐pulse depression, and potentiation/depression curve. Finally, an artificial neural network for off‐chip digit recognition is simulated to assess the performance of the device for the neuromorphic application and achieved a test accuracy of 95.94% on the Modified National Institute of Standards and Technology dataset. A robust solid‐state iontronic synaptic memtransistor is developed using a bilayer thin‐film dielectric of poly(ethylene oxide) and superionic rubidium silver iodide (RbAg4I5), which can serve as the basic building blocks for neuromorphic computing hardware‐implementation. The transfer curves of this device depict a colossal hysteresis of resistive switching and yield an interesting signature of negative differential transconductance.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202304228</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4750-0542</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-01, Vol.34 (1), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2908982103
source Wiley Online Library Journals Frontfile Complete
subjects Artificial neural networks
Bilayers
Data processing
Dielectric properties
Ethylene oxide
iontronics
negative differential transconductance
Neuromorphic computing
pattern recognition
Photoelectrons
Polyethylene oxide
Rubidium
rubidium silver iodide
Silver halides
Solid electrolytes
synaptic weight
Thin films
Transconductance
title Superionic Silver Halide Solid Electrolyte: Dielectric Property and Iontronic Memtransistor Application for Bioinspired Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T12%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superionic%20Silver%20Halide%20Solid%20Electrolyte:%20Dielectric%20Property%20and%20Iontronic%20Memtransistor%20Application%20for%20Bioinspired%20Computing&rft.jtitle=Advanced%20functional%20materials&rft.au=Mukherjee,%20Arka&rft.date=2024-01-01&rft.volume=34&rft.issue=1&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202304228&rft_dat=%3Cproquest_cross%3E2908982103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908982103&rft_id=info:pmid/&rfr_iscdi=true