Evaluation of Temperature Elevation in Human Ocular Tissues due to Wireless Eyewear Devices
In this paper, a numerical study is proposed to evaluate the temperature variation in the human ocular tissues during the electromagnetic radiation exposure from wireless eyewear device. The results show that the temperature in the whole eyeball increases gradually as the exposure time goes on and c...
Gespeichert in:
Veröffentlicht in: | Applied Computational Electromagnetics Society journal 2019-01, Vol.34 (1), p.17 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a numerical study is proposed to evaluate the temperature variation in the human ocular tissues during the electromagnetic radiation exposure from wireless eyewear device. The results show that the temperature in the whole eyeball increases gradually as the exposure time goes on and could reach the thermal steady state at about 30 minutes. During this process, the temperature increments in different ocular tissues are between 1.1°C and 1.7°C. The results also show the maximal ratio of temperature increments in the initial 5 and 10 minutes to that of the whole steady state could reach to 42.9% and 69.2%, respectively. Therefore, we believe that electromagnetic radiation from wireless eyewear device might pose a threat on the health of the human eyes. People should decrease the talk time as soon as possible to protect their eyes from the possible health hazards. Finally, attention is paid to evaluate the relationship between the maximal SAR and the temperature increments. The results show the temperature increments do not increase in direct proportion to the maximal SAR, which indicates that the maximal SAR and the temperature increments should be taken into account simultaneously while evaluating the biological effect of microwave on the ocular tissues. |
---|---|
ISSN: | 1054-4887 1943-5711 |