Ligand 1H NMR Chemical Shifts as Accurate Reporters for Protein‐Ligand Binding Interfaces in Solution

The availability of high‐resolution 3D structural information is crucial for investigating guest‐host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure‐activity relationships, grow initial hits from screenin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2024-01, Vol.25 (1), p.n/a
Hauptverfasser: Platzer, Gerald, Ptaszek, Aleksandra L., Böttcher, Jark, Fuchs, Julian E., Geist, Leonhard, Braun, Daniel, McConnell, Darryl B., Konrat, Robert, Sánchez‐Murcia, Pedro A., Mayer, Moriz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Chemphyschem
container_volume 25
creator Platzer, Gerald
Ptaszek, Aleksandra L.
Böttcher, Jark
Fuchs, Julian E.
Geist, Leonhard
Braun, Daniel
McConnell, Darryl B.
Konrat, Robert
Sánchez‐Murcia, Pedro A.
Mayer, Moriz
description The availability of high‐resolution 3D structural information is crucial for investigating guest‐host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure‐activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein‐ligand complex structural information, X‐ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution‐state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. By comparing the experimental ligand 1H chemical shift values with those computed from the X‐ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X‐ray co‐crystal structures resulting in a better agreement with experimental 1H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data. Protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. Our findings highlight the usefulness of experimentally derived ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data.
doi_str_mv 10.1002/cphc.202300636
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2908959531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908959531</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2036-1009c4b1328aa9340c86d4068c3699da021d1088b2afe0112264491af6bde75d3</originalsourceid><addsrcrecordid>eNo9kM1OAjEURhujiYhuXTdxjd7-TJkucaJCgkpA103pdKBk6IztTAw7H8Fn9EkcAmF1v5ucfDf3IHRL4J4A0AdTr809BcoABBNnqEc4k4Oh4OT8mDllySW6inEDACkMSQ-tpm6lfY7JGL-9znG2tltndIkXa1c0EeuIR8a0QTcWz21dhcaGiIsq4FmoGuv838_vseHR-dz5FZ74jim0sRE7jxdV2Tau8tfootBltDfH2Uefz08f2XgwfX-ZZKPpoKbAxKB7RBq-JIymWkvGwaQi5yBSw4SUuQZKcgJpuqS6sEAIpYJzSXQhlrkdJjnro7tDbx2qr9bGRm2qNvjupKISUpnIhJGOkgfq25V2p-rgtjrsFAG1N6n2JtXJpMpm4-y0sX-np2lE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908959531</pqid></control><display><type>article</type><title>Ligand 1H NMR Chemical Shifts as Accurate Reporters for Protein‐Ligand Binding Interfaces in Solution</title><source>Wiley Online Library All Journals</source><creator>Platzer, Gerald ; Ptaszek, Aleksandra L. ; Böttcher, Jark ; Fuchs, Julian E. ; Geist, Leonhard ; Braun, Daniel ; McConnell, Darryl B. ; Konrat, Robert ; Sánchez‐Murcia, Pedro A. ; Mayer, Moriz</creator><creatorcontrib>Platzer, Gerald ; Ptaszek, Aleksandra L. ; Böttcher, Jark ; Fuchs, Julian E. ; Geist, Leonhard ; Braun, Daniel ; McConnell, Darryl B. ; Konrat, Robert ; Sánchez‐Murcia, Pedro A. ; Mayer, Moriz</creatorcontrib><description>The availability of high‐resolution 3D structural information is crucial for investigating guest‐host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure‐activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein‐ligand complex structural information, X‐ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution‐state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. By comparing the experimental ligand 1H chemical shift values with those computed from the X‐ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X‐ray co‐crystal structures resulting in a better agreement with experimental 1H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data. Protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. Our findings highlight the usefulness of experimentally derived ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202300636</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Binding ; Chemical equilibrium ; chemical shift ; computational chemistry ; Crystallography ; drug design ; Ligands ; Molecular docking ; Molecular dynamics ; NMR ; NMR spectroscopy ; non-covalent interactions ; Nuclear magnetic resonance ; Proteins ; Quantum mechanics ; Quantum physics ; Structural models ; Workflow</subject><ispartof>Chemphyschem, 2024-01, Vol.25 (1), p.n/a</ispartof><rights>2023 The Authors. ChemPhysChem published by Wiley-VCH GmbH</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4322-9481 ; 0000-0002-3241-676X ; 0000-0002-9111-995X ; 0000-0003-3432-4348 ; 0000-0003-3466-0245 ; 0000-0002-7998-0982 ; 0000-0003-2189-5926 ; 0000-0001-6489-4080 ; 0000-0001-8415-870X ; 0000-0002-2537-3458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.202300636$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.202300636$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Platzer, Gerald</creatorcontrib><creatorcontrib>Ptaszek, Aleksandra L.</creatorcontrib><creatorcontrib>Böttcher, Jark</creatorcontrib><creatorcontrib>Fuchs, Julian E.</creatorcontrib><creatorcontrib>Geist, Leonhard</creatorcontrib><creatorcontrib>Braun, Daniel</creatorcontrib><creatorcontrib>McConnell, Darryl B.</creatorcontrib><creatorcontrib>Konrat, Robert</creatorcontrib><creatorcontrib>Sánchez‐Murcia, Pedro A.</creatorcontrib><creatorcontrib>Mayer, Moriz</creatorcontrib><title>Ligand 1H NMR Chemical Shifts as Accurate Reporters for Protein‐Ligand Binding Interfaces in Solution</title><title>Chemphyschem</title><description>The availability of high‐resolution 3D structural information is crucial for investigating guest‐host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure‐activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein‐ligand complex structural information, X‐ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution‐state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. By comparing the experimental ligand 1H chemical shift values with those computed from the X‐ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X‐ray co‐crystal structures resulting in a better agreement with experimental 1H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data. Protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. Our findings highlight the usefulness of experimentally derived ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data.</description><subject>Binding</subject><subject>Chemical equilibrium</subject><subject>chemical shift</subject><subject>computational chemistry</subject><subject>Crystallography</subject><subject>drug design</subject><subject>Ligands</subject><subject>Molecular docking</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>non-covalent interactions</subject><subject>Nuclear magnetic resonance</subject><subject>Proteins</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Structural models</subject><subject>Workflow</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNo9kM1OAjEURhujiYhuXTdxjd7-TJkucaJCgkpA103pdKBk6IztTAw7H8Fn9EkcAmF1v5ucfDf3IHRL4J4A0AdTr809BcoABBNnqEc4k4Oh4OT8mDllySW6inEDACkMSQ-tpm6lfY7JGL-9znG2tltndIkXa1c0EeuIR8a0QTcWz21dhcaGiIsq4FmoGuv838_vseHR-dz5FZ74jim0sRE7jxdV2Tau8tfootBltDfH2Uefz08f2XgwfX-ZZKPpoKbAxKB7RBq-JIymWkvGwaQi5yBSw4SUuQZKcgJpuqS6sEAIpYJzSXQhlrkdJjnro7tDbx2qr9bGRm2qNvjupKISUpnIhJGOkgfq25V2p-rgtjrsFAG1N6n2JtXJpMpm4-y0sX-np2lE</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Platzer, Gerald</creator><creator>Ptaszek, Aleksandra L.</creator><creator>Böttcher, Jark</creator><creator>Fuchs, Julian E.</creator><creator>Geist, Leonhard</creator><creator>Braun, Daniel</creator><creator>McConnell, Darryl B.</creator><creator>Konrat, Robert</creator><creator>Sánchez‐Murcia, Pedro A.</creator><creator>Mayer, Moriz</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0003-4322-9481</orcidid><orcidid>https://orcid.org/0000-0002-3241-676X</orcidid><orcidid>https://orcid.org/0000-0002-9111-995X</orcidid><orcidid>https://orcid.org/0000-0003-3432-4348</orcidid><orcidid>https://orcid.org/0000-0003-3466-0245</orcidid><orcidid>https://orcid.org/0000-0002-7998-0982</orcidid><orcidid>https://orcid.org/0000-0003-2189-5926</orcidid><orcidid>https://orcid.org/0000-0001-6489-4080</orcidid><orcidid>https://orcid.org/0000-0001-8415-870X</orcidid><orcidid>https://orcid.org/0000-0002-2537-3458</orcidid></search><sort><creationdate>20240102</creationdate><title>Ligand 1H NMR Chemical Shifts as Accurate Reporters for Protein‐Ligand Binding Interfaces in Solution</title><author>Platzer, Gerald ; Ptaszek, Aleksandra L. ; Böttcher, Jark ; Fuchs, Julian E. ; Geist, Leonhard ; Braun, Daniel ; McConnell, Darryl B. ; Konrat, Robert ; Sánchez‐Murcia, Pedro A. ; Mayer, Moriz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2036-1009c4b1328aa9340c86d4068c3699da021d1088b2afe0112264491af6bde75d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Binding</topic><topic>Chemical equilibrium</topic><topic>chemical shift</topic><topic>computational chemistry</topic><topic>Crystallography</topic><topic>drug design</topic><topic>Ligands</topic><topic>Molecular docking</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>non-covalent interactions</topic><topic>Nuclear magnetic resonance</topic><topic>Proteins</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Structural models</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Platzer, Gerald</creatorcontrib><creatorcontrib>Ptaszek, Aleksandra L.</creatorcontrib><creatorcontrib>Böttcher, Jark</creatorcontrib><creatorcontrib>Fuchs, Julian E.</creatorcontrib><creatorcontrib>Geist, Leonhard</creatorcontrib><creatorcontrib>Braun, Daniel</creatorcontrib><creatorcontrib>McConnell, Darryl B.</creatorcontrib><creatorcontrib>Konrat, Robert</creatorcontrib><creatorcontrib>Sánchez‐Murcia, Pedro A.</creatorcontrib><creatorcontrib>Mayer, Moriz</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Platzer, Gerald</au><au>Ptaszek, Aleksandra L.</au><au>Böttcher, Jark</au><au>Fuchs, Julian E.</au><au>Geist, Leonhard</au><au>Braun, Daniel</au><au>McConnell, Darryl B.</au><au>Konrat, Robert</au><au>Sánchez‐Murcia, Pedro A.</au><au>Mayer, Moriz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand 1H NMR Chemical Shifts as Accurate Reporters for Protein‐Ligand Binding Interfaces in Solution</atitle><jtitle>Chemphyschem</jtitle><date>2024-01-02</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><epage>n/a</epage><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>The availability of high‐resolution 3D structural information is crucial for investigating guest‐host systems across a wide range of fields. In the context of drug discovery, the information is routinely used to establish and validate structure‐activity relationships, grow initial hits from screening campaigns, and to guide molecular docking. For the generation of protein‐ligand complex structural information, X‐ray crystallography is the experimental method of choice, however, with limited information on protein flexibility. An experimentally verified structural model of the binding interface in the native solution‐state would support medicinal chemists in their molecular design decisions. Here we demonstrate that protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. By comparing the experimental ligand 1H chemical shift values with those computed from the X‐ray structure using quantum mechanics methodology, we identify significant disagreements for parts of the ligand between the two experimental techniques. We show that quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) ensembles can be used to refine initial X‐ray co‐crystal structures resulting in a better agreement with experimental 1H ligand chemical shift values. Overall, our findings highlight the usefulness of ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data. Protein‐bound ligand 1H NMR chemical shifts are highly sensitive and accurate probes for the immediate chemical environment of protein‐ligand interfaces. Our findings highlight the usefulness of experimentally derived ligand 1H NMR chemical shift information in combination with a QM/MM MD workflow for generating protein‐ligand ensembles that accurately reproduce solution structural data.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.202300636</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4322-9481</orcidid><orcidid>https://orcid.org/0000-0002-3241-676X</orcidid><orcidid>https://orcid.org/0000-0002-9111-995X</orcidid><orcidid>https://orcid.org/0000-0003-3432-4348</orcidid><orcidid>https://orcid.org/0000-0003-3466-0245</orcidid><orcidid>https://orcid.org/0000-0002-7998-0982</orcidid><orcidid>https://orcid.org/0000-0003-2189-5926</orcidid><orcidid>https://orcid.org/0000-0001-6489-4080</orcidid><orcidid>https://orcid.org/0000-0001-8415-870X</orcidid><orcidid>https://orcid.org/0000-0002-2537-3458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2024-01, Vol.25 (1), p.n/a
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_journals_2908959531
source Wiley Online Library All Journals
subjects Binding
Chemical equilibrium
chemical shift
computational chemistry
Crystallography
drug design
Ligands
Molecular docking
Molecular dynamics
NMR
NMR spectroscopy
non-covalent interactions
Nuclear magnetic resonance
Proteins
Quantum mechanics
Quantum physics
Structural models
Workflow
title Ligand 1H NMR Chemical Shifts as Accurate Reporters for Protein‐Ligand Binding Interfaces in Solution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand%201H%20NMR%20Chemical%20Shifts%20as%20Accurate%20Reporters%20for%20Protein%E2%80%90Ligand%20Binding%20Interfaces%20in%20Solution&rft.jtitle=Chemphyschem&rft.au=Platzer,%20Gerald&rft.date=2024-01-02&rft.volume=25&rft.issue=1&rft.epage=n/a&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202300636&rft_dat=%3Cproquest_wiley%3E2908959531%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908959531&rft_id=info:pmid/&rfr_iscdi=true