Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives
Serendipitous recommendations have emerged as a compelling approach to deliver users with unexpected yet valuable information, contributing to heightened user satisfaction and engagement. This survey presents an investigation of the most recent research in serendipity recommenders, with a specific e...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2024-01, Vol.56 (1), p.1-26, Article 19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 56 |
creator | Fu, Zhe Niu, Xi Maher, Mary Lou |
description | Serendipitous recommendations have emerged as a compelling approach to deliver users with unexpected yet valuable information, contributing to heightened user satisfaction and engagement. This survey presents an investigation of the most recent research in serendipity recommenders, with a specific emphasis on deep learning recommendation models. We categorize these models into three types, distinguishing their integration of the serendipity objective across distinct stages: pre-processing, in-processing, and post-processing. Additionally, we provide a review and summary of the serendipity definition, available ground truth datasets, and evaluation experiments employed in the field. We propose three promising avenues for future exploration: (1) leveraging user reviews to identify and explore serendipity, (2) employing reinforcement learning to construct a model for discerning appropriate timing for serendipitous recommendations, and (3) utilizing cross-domain learning to enhance serendipitous recommendations. With this review, we aim to cultivate a deeper understanding of serendipity in recommender systems and inspire further advancements in this domain. |
doi_str_mv | 10.1145/3605145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2908807751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908807751</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-4ad27b687f0615a9c3428ea8d1bab6d537b8c517caf91f18a5745e518bc1b2503</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqUg7pwsceAU2I3j2OFWladUHqJwjhxng1I1cbDTov57glo4jXbm0440jJ0iXCIm8kqkIAfdYyOUUkVKJLjPRjDYEQiAQ3YUwgIA4gTTEZvfEHV8Rsa3dfvJn1xJy8Ar5_mcPLVl3dX9hr-RdU0znKavXRuu-YTPV35NG27akj_TN38lHzqyfb2mcMwOKrMMdLLTMfu4u32fPkSzl_vH6WQWGQGyjxJTxqpItaogRWkyK5JYk9ElFqZISylUoa1EZU2VYYXaSJVIkqgLi0UsQYzZ-fZv593XikKfL9zKt0NlHmegNSglcaAutpT1LgRPVd75ujF-kyPkv4vlu8UG8mxLGtv8Q3_hD0_NZIo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908807751</pqid></control><display><type>article</type><title>Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives</title><source>ACM Digital Library Complete</source><creator>Fu, Zhe ; Niu, Xi ; Maher, Mary Lou</creator><creatorcontrib>Fu, Zhe ; Niu, Xi ; Maher, Mary Lou</creatorcontrib><description>Serendipitous recommendations have emerged as a compelling approach to deliver users with unexpected yet valuable information, contributing to heightened user satisfaction and engagement. This survey presents an investigation of the most recent research in serendipity recommenders, with a specific emphasis on deep learning recommendation models. We categorize these models into three types, distinguishing their integration of the serendipity objective across distinct stages: pre-processing, in-processing, and post-processing. Additionally, we provide a review and summary of the serendipity definition, available ground truth datasets, and evaluation experiments employed in the field. We propose three promising avenues for future exploration: (1) leveraging user reviews to identify and explore serendipity, (2) employing reinforcement learning to construct a model for discerning appropriate timing for serendipitous recommendations, and (3) utilizing cross-domain learning to enhance serendipitous recommendations. With this review, we aim to cultivate a deeper understanding of serendipity in recommender systems and inspire further advancements in this domain.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3605145</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Computer science ; Deep learning ; Information systems ; Recommender systems ; Serendipity ; User satisfaction</subject><ispartof>ACM computing surveys, 2024-01, Vol.56 (1), p.1-26, Article 19</ispartof><rights>Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from</rights><rights>Copyright Association for Computing Machinery Jan 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-4ad27b687f0615a9c3428ea8d1bab6d537b8c517caf91f18a5745e518bc1b2503</citedby><cites>FETCH-LOGICAL-a305t-4ad27b687f0615a9c3428ea8d1bab6d537b8c517caf91f18a5745e518bc1b2503</cites><orcidid>0000-0002-3097-8451 ; 0000-0002-5418-6969 ; 0000-0002-4150-0322</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3605145$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,780,784,2282,27924,27925,40196,76228</link.rule.ids></links><search><creatorcontrib>Fu, Zhe</creatorcontrib><creatorcontrib>Niu, Xi</creatorcontrib><creatorcontrib>Maher, Mary Lou</creatorcontrib><title>Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Serendipitous recommendations have emerged as a compelling approach to deliver users with unexpected yet valuable information, contributing to heightened user satisfaction and engagement. This survey presents an investigation of the most recent research in serendipity recommenders, with a specific emphasis on deep learning recommendation models. We categorize these models into three types, distinguishing their integration of the serendipity objective across distinct stages: pre-processing, in-processing, and post-processing. Additionally, we provide a review and summary of the serendipity definition, available ground truth datasets, and evaluation experiments employed in the field. We propose three promising avenues for future exploration: (1) leveraging user reviews to identify and explore serendipity, (2) employing reinforcement learning to construct a model for discerning appropriate timing for serendipitous recommendations, and (3) utilizing cross-domain learning to enhance serendipitous recommendations. With this review, we aim to cultivate a deeper understanding of serendipity in recommender systems and inspire further advancements in this domain.</description><subject>Computer science</subject><subject>Deep learning</subject><subject>Information systems</subject><subject>Recommender systems</subject><subject>Serendipity</subject><subject>User satisfaction</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqUg7pwsceAU2I3j2OFWladUHqJwjhxng1I1cbDTov57glo4jXbm0440jJ0iXCIm8kqkIAfdYyOUUkVKJLjPRjDYEQiAQ3YUwgIA4gTTEZvfEHV8Rsa3dfvJn1xJy8Ar5_mcPLVl3dX9hr-RdU0znKavXRuu-YTPV35NG27akj_TN38lHzqyfb2mcMwOKrMMdLLTMfu4u32fPkSzl_vH6WQWGQGyjxJTxqpItaogRWkyK5JYk9ElFqZISylUoa1EZU2VYYXaSJVIkqgLi0UsQYzZ-fZv593XikKfL9zKt0NlHmegNSglcaAutpT1LgRPVd75ujF-kyPkv4vlu8UG8mxLGtv8Q3_hD0_NZIo</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Fu, Zhe</creator><creator>Niu, Xi</creator><creator>Maher, Mary Lou</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3097-8451</orcidid><orcidid>https://orcid.org/0000-0002-5418-6969</orcidid><orcidid>https://orcid.org/0000-0002-4150-0322</orcidid></search><sort><creationdate>20240101</creationdate><title>Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives</title><author>Fu, Zhe ; Niu, Xi ; Maher, Mary Lou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-4ad27b687f0615a9c3428ea8d1bab6d537b8c517caf91f18a5745e518bc1b2503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computer science</topic><topic>Deep learning</topic><topic>Information systems</topic><topic>Recommender systems</topic><topic>Serendipity</topic><topic>User satisfaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Zhe</creatorcontrib><creatorcontrib>Niu, Xi</creatorcontrib><creatorcontrib>Maher, Mary Lou</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Zhe</au><au>Niu, Xi</au><au>Maher, Mary Lou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>56</volume><issue>1</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>19</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Serendipitous recommendations have emerged as a compelling approach to deliver users with unexpected yet valuable information, contributing to heightened user satisfaction and engagement. This survey presents an investigation of the most recent research in serendipity recommenders, with a specific emphasis on deep learning recommendation models. We categorize these models into three types, distinguishing their integration of the serendipity objective across distinct stages: pre-processing, in-processing, and post-processing. Additionally, we provide a review and summary of the serendipity definition, available ground truth datasets, and evaluation experiments employed in the field. We propose three promising avenues for future exploration: (1) leveraging user reviews to identify and explore serendipity, (2) employing reinforcement learning to construct a model for discerning appropriate timing for serendipitous recommendations, and (3) utilizing cross-domain learning to enhance serendipitous recommendations. With this review, we aim to cultivate a deeper understanding of serendipity in recommender systems and inspire further advancements in this domain.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3605145</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-3097-8451</orcidid><orcidid>https://orcid.org/0000-0002-5418-6969</orcidid><orcidid>https://orcid.org/0000-0002-4150-0322</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2024-01, Vol.56 (1), p.1-26, Article 19 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_2908807751 |
source | ACM Digital Library Complete |
subjects | Computer science Deep learning Information systems Recommender systems Serendipity User satisfaction |
title | Deep Learning Models for Serendipity Recommendations: A Survey and New Perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Models%20for%20Serendipity%20Recommendations:%20A%20Survey%20and%20New%20Perspectives&rft.jtitle=ACM%20computing%20surveys&rft.au=Fu,%20Zhe&rft.date=2024-01-01&rft.volume=56&rft.issue=1&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=19&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3605145&rft_dat=%3Cproquest_cross%3E2908807751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908807751&rft_id=info:pmid/&rfr_iscdi=true |