Rational design of water-harvesting hydrogels
Water-harvesting polymer materials have the potential to create new sources of potable water. However, a holistic understanding of the relationship between polymer structure and water-harvesting properties is lacking compared to studies on specific materials. In this work, we synthesised a library o...
Gespeichert in:
Veröffentlicht in: | Molecular systems design & engineering 2024-01, Vol.9 (1), p.63-72 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Molecular systems design & engineering |
container_volume | 9 |
creator | Thanusing, Moki K Shen, Peidong Pollard, Brett L Connal, Luke A |
description | Water-harvesting polymer materials have the potential to create new sources of potable water. However, a holistic understanding of the relationship between polymer structure and water-harvesting properties is lacking compared to studies on specific materials. In this work, we synthesised a library of methacrylic acid-
co
-poly(ethylene glycol) methyl ether methacrylate)-based hydrogels (poly(MAA-
co
-PEGMA)) with directed modifications, including composition, crosslinker lengths, crosslinking density and preparation of the hydrogels. MAA serves as a hygroscopic monomer while PEGMA provides hydrophilicity and thermoresponsive properties. The water uptake and release capabilities of all materials was also assessed. The optimised composition of the copolymer (75 : 5 : 20 MAA : EGDMA : PEGMA, mole%) has a water uptake of 98 mg g
−1
polymer at 60% RH after 24 hours. The poly(MAA-
co
-PEGMA) materials also show a capability for water release, showing no significant decrease in water uptake capacity after repeated uptake-release cycles. Minimum temperatures for water release could easily be adjusted with polymer composition, ranging from 50-70 °C. The data presented in this body of work serves as a foundation for future efforts in creating thermoresponsive, water-harvesting polymers with real-world applications.
Water-harvesting polymer materials have the potential to create new sources of potable water. |
doi_str_mv | 10.1039/d3me00132f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2908273017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2908273017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-e949b50ee9ffadbcecb28484d448c158514b4f04ea5d7b5c21321301812cb49e3</originalsourceid><addsrcrecordid>eNpN0EtLw0AUBeBBFCy1G_dCwJ0QnWcys5TaqlARRNdhHnfSlLSpM6ml_97RiLq6d_FxOByEzgm-JpipG8fWgDFh1B-hEcVC5qqQ6vjff4omMa5wQoUsqChGKH_RfdNtdJs5iE29yTqf7XUPIV_q8AGxbzZ1tjy40NXQxjN04nUbYfJzx-htPnudPuSL5_vH6e0it5TjPgfFlREYQHmvnbFgDZVccse5tERIQbjhHnPQwpVGWJo6E4aJJNQaroCN0eWQuw3d-y61qFbdLqSWsaIKS1omXCZ1NSgbuhgD-GobmrUOh4rg6muR6o49zb4XmSd8MeAQ7a_7W4x9AjViW88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908273017</pqid></control><display><type>article</type><title>Rational design of water-harvesting hydrogels</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Thanusing, Moki K ; Shen, Peidong ; Pollard, Brett L ; Connal, Luke A</creator><creatorcontrib>Thanusing, Moki K ; Shen, Peidong ; Pollard, Brett L ; Connal, Luke A</creatorcontrib><description>Water-harvesting polymer materials have the potential to create new sources of potable water. However, a holistic understanding of the relationship between polymer structure and water-harvesting properties is lacking compared to studies on specific materials. In this work, we synthesised a library of methacrylic acid-
co
-poly(ethylene glycol) methyl ether methacrylate)-based hydrogels (poly(MAA-
co
-PEGMA)) with directed modifications, including composition, crosslinker lengths, crosslinking density and preparation of the hydrogels. MAA serves as a hygroscopic monomer while PEGMA provides hydrophilicity and thermoresponsive properties. The water uptake and release capabilities of all materials was also assessed. The optimised composition of the copolymer (75 : 5 : 20 MAA : EGDMA : PEGMA, mole%) has a water uptake of 98 mg g
−1
polymer at 60% RH after 24 hours. The poly(MAA-
co
-PEGMA) materials also show a capability for water release, showing no significant decrease in water uptake capacity after repeated uptake-release cycles. Minimum temperatures for water release could easily be adjusted with polymer composition, ranging from 50-70 °C. The data presented in this body of work serves as a foundation for future efforts in creating thermoresponsive, water-harvesting polymers with real-world applications.
Water-harvesting polymer materials have the potential to create new sources of potable water.</description><identifier>ISSN: 2058-9689</identifier><identifier>EISSN: 2058-9689</identifier><identifier>DOI: 10.1039/d3me00132f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Composition ; Copolymers ; Crosslinking ; Drinking water ; Hydrogels ; Methacrylic acid ; Polyethylene glycol ; Polymers</subject><ispartof>Molecular systems design & engineering, 2024-01, Vol.9 (1), p.63-72</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-e949b50ee9ffadbcecb28484d448c158514b4f04ea5d7b5c21321301812cb49e3</cites><orcidid>0000-0002-5148-9665 ; 0009-0004-5926-1106 ; 0000-0001-7519-977X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Thanusing, Moki K</creatorcontrib><creatorcontrib>Shen, Peidong</creatorcontrib><creatorcontrib>Pollard, Brett L</creatorcontrib><creatorcontrib>Connal, Luke A</creatorcontrib><title>Rational design of water-harvesting hydrogels</title><title>Molecular systems design & engineering</title><description>Water-harvesting polymer materials have the potential to create new sources of potable water. However, a holistic understanding of the relationship between polymer structure and water-harvesting properties is lacking compared to studies on specific materials. In this work, we synthesised a library of methacrylic acid-
co
-poly(ethylene glycol) methyl ether methacrylate)-based hydrogels (poly(MAA-
co
-PEGMA)) with directed modifications, including composition, crosslinker lengths, crosslinking density and preparation of the hydrogels. MAA serves as a hygroscopic monomer while PEGMA provides hydrophilicity and thermoresponsive properties. The water uptake and release capabilities of all materials was also assessed. The optimised composition of the copolymer (75 : 5 : 20 MAA : EGDMA : PEGMA, mole%) has a water uptake of 98 mg g
−1
polymer at 60% RH after 24 hours. The poly(MAA-
co
-PEGMA) materials also show a capability for water release, showing no significant decrease in water uptake capacity after repeated uptake-release cycles. Minimum temperatures for water release could easily be adjusted with polymer composition, ranging from 50-70 °C. The data presented in this body of work serves as a foundation for future efforts in creating thermoresponsive, water-harvesting polymers with real-world applications.
Water-harvesting polymer materials have the potential to create new sources of potable water.</description><subject>Composition</subject><subject>Copolymers</subject><subject>Crosslinking</subject><subject>Drinking water</subject><subject>Hydrogels</subject><subject>Methacrylic acid</subject><subject>Polyethylene glycol</subject><subject>Polymers</subject><issn>2058-9689</issn><issn>2058-9689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0EtLw0AUBeBBFCy1G_dCwJ0QnWcys5TaqlARRNdhHnfSlLSpM6ml_97RiLq6d_FxOByEzgm-JpipG8fWgDFh1B-hEcVC5qqQ6vjff4omMa5wQoUsqChGKH_RfdNtdJs5iE29yTqf7XUPIV_q8AGxbzZ1tjy40NXQxjN04nUbYfJzx-htPnudPuSL5_vH6e0it5TjPgfFlREYQHmvnbFgDZVccse5tERIQbjhHnPQwpVGWJo6E4aJJNQaroCN0eWQuw3d-y61qFbdLqSWsaIKS1omXCZ1NSgbuhgD-GobmrUOh4rg6muR6o49zb4XmSd8MeAQ7a_7W4x9AjViW88</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Thanusing, Moki K</creator><creator>Shen, Peidong</creator><creator>Pollard, Brett L</creator><creator>Connal, Luke A</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5148-9665</orcidid><orcidid>https://orcid.org/0009-0004-5926-1106</orcidid><orcidid>https://orcid.org/0000-0001-7519-977X</orcidid></search><sort><creationdate>20240102</creationdate><title>Rational design of water-harvesting hydrogels</title><author>Thanusing, Moki K ; Shen, Peidong ; Pollard, Brett L ; Connal, Luke A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-e949b50ee9ffadbcecb28484d448c158514b4f04ea5d7b5c21321301812cb49e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Composition</topic><topic>Copolymers</topic><topic>Crosslinking</topic><topic>Drinking water</topic><topic>Hydrogels</topic><topic>Methacrylic acid</topic><topic>Polyethylene glycol</topic><topic>Polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanusing, Moki K</creatorcontrib><creatorcontrib>Shen, Peidong</creatorcontrib><creatorcontrib>Pollard, Brett L</creatorcontrib><creatorcontrib>Connal, Luke A</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Molecular systems design & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanusing, Moki K</au><au>Shen, Peidong</au><au>Pollard, Brett L</au><au>Connal, Luke A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rational design of water-harvesting hydrogels</atitle><jtitle>Molecular systems design & engineering</jtitle><date>2024-01-02</date><risdate>2024</risdate><volume>9</volume><issue>1</issue><spage>63</spage><epage>72</epage><pages>63-72</pages><issn>2058-9689</issn><eissn>2058-9689</eissn><abstract>Water-harvesting polymer materials have the potential to create new sources of potable water. However, a holistic understanding of the relationship between polymer structure and water-harvesting properties is lacking compared to studies on specific materials. In this work, we synthesised a library of methacrylic acid-
co
-poly(ethylene glycol) methyl ether methacrylate)-based hydrogels (poly(MAA-
co
-PEGMA)) with directed modifications, including composition, crosslinker lengths, crosslinking density and preparation of the hydrogels. MAA serves as a hygroscopic monomer while PEGMA provides hydrophilicity and thermoresponsive properties. The water uptake and release capabilities of all materials was also assessed. The optimised composition of the copolymer (75 : 5 : 20 MAA : EGDMA : PEGMA, mole%) has a water uptake of 98 mg g
−1
polymer at 60% RH after 24 hours. The poly(MAA-
co
-PEGMA) materials also show a capability for water release, showing no significant decrease in water uptake capacity after repeated uptake-release cycles. Minimum temperatures for water release could easily be adjusted with polymer composition, ranging from 50-70 °C. The data presented in this body of work serves as a foundation for future efforts in creating thermoresponsive, water-harvesting polymers with real-world applications.
Water-harvesting polymer materials have the potential to create new sources of potable water.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3me00132f</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5148-9665</orcidid><orcidid>https://orcid.org/0009-0004-5926-1106</orcidid><orcidid>https://orcid.org/0000-0001-7519-977X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-9689 |
ispartof | Molecular systems design & engineering, 2024-01, Vol.9 (1), p.63-72 |
issn | 2058-9689 2058-9689 |
language | eng |
recordid | cdi_proquest_journals_2908273017 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Composition Copolymers Crosslinking Drinking water Hydrogels Methacrylic acid Polyethylene glycol Polymers |
title | Rational design of water-harvesting hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A58%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rational%20design%20of%20water-harvesting%20hydrogels&rft.jtitle=Molecular%20systems%20design%20&%20engineering&rft.au=Thanusing,%20Moki%20K&rft.date=2024-01-02&rft.volume=9&rft.issue=1&rft.spage=63&rft.epage=72&rft.pages=63-72&rft.issn=2058-9689&rft.eissn=2058-9689&rft_id=info:doi/10.1039/d3me00132f&rft_dat=%3Cproquest_cross%3E2908273017%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2908273017&rft_id=info:pmid/&rfr_iscdi=true |