Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations
In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These mode...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2024-03, Vol.56 (3), Article 325 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Optical and quantum electronics |
container_volume | 56 |
creator | Akram, Ghazala Sadaf, Maasoomah Perveen, Zahida Sarfraz, Maria Alsubaie, A. S. A. Inc, Mustafa |
description | In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically. |
doi_str_mv | 10.1007/s11082-023-05758-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2907790718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907790718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAjSKjN8nMJFlKqQ8s6ELBlSHNo0yZzrTJjFV_vWkruHNxuffCdw6Hg9ApgSsCwK8jISBoBpRlUPBCZOs9NCAFp5kg_G0fDYBBmQlJ5CE6inEOAGVewAC9jz-16XAX9Ier66qZ4XW6cGzrvqvaJmLfBjxzjQu6rr6dxefsklxgWy1cExOga_z4jHVj8aK1la8SkX636vVWfowOvK6jO_ndQ_R6O34Z3WeTp7uH0c0kM5QDSSGZ9dow7V0hp0QYUmpqOCmnhkpJgeVguRQyp1Tkwmk51ZZIS73PgRkv2BCd7XyXoV31LnZq3vYhpYuKSuA8DdlQdEeZ0MYYnFfLUC10-FIE1KZHtetRpR7Vtke1TiK2E8UENzMX_qz_Uf0A-fl10Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907790718</pqid></control><display><type>article</type><title>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</title><source>SpringerNature Journals</source><creator>Akram, Ghazala ; Sadaf, Maasoomah ; Perveen, Zahida ; Sarfraz, Maria ; Alsubaie, A. S. A. ; Inc, Mustafa</creator><creatorcontrib>Akram, Ghazala ; Sadaf, Maasoomah ; Perveen, Zahida ; Sarfraz, Maria ; Alsubaie, A. S. A. ; Inc, Mustafa</creatorcontrib><description>In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-023-05758-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Exact solutions ; Fluid dynamics ; Lasers ; Nonlinear phenomena ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Plasma physics ; Solitary waves ; Surface water ; Traveling waves</subject><ispartof>Optical and quantum electronics, 2024-03, Vol.56 (3), Article 325</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</citedby><cites>FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-023-05758-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-023-05758-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Akram, Ghazala</creatorcontrib><creatorcontrib>Sadaf, Maasoomah</creatorcontrib><creatorcontrib>Perveen, Zahida</creatorcontrib><creatorcontrib>Sarfraz, Maria</creatorcontrib><creatorcontrib>Alsubaie, A. S. A.</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><title>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Lasers</subject><subject>Nonlinear phenomena</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma physics</subject><subject>Solitary waves</subject><subject>Surface water</subject><subject>Traveling waves</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAjSKjN8nMJFlKqQ8s6ELBlSHNo0yZzrTJjFV_vWkruHNxuffCdw6Hg9ApgSsCwK8jISBoBpRlUPBCZOs9NCAFp5kg_G0fDYBBmQlJ5CE6inEOAGVewAC9jz-16XAX9Ier66qZ4XW6cGzrvqvaJmLfBjxzjQu6rr6dxefsklxgWy1cExOga_z4jHVj8aK1la8SkX636vVWfowOvK6jO_ndQ_R6O34Z3WeTp7uH0c0kM5QDSSGZ9dow7V0hp0QYUmpqOCmnhkpJgeVguRQyp1Tkwmk51ZZIS73PgRkv2BCd7XyXoV31LnZq3vYhpYuKSuA8DdlQdEeZ0MYYnFfLUC10-FIE1KZHtetRpR7Vtke1TiK2E8UENzMX_qz_Uf0A-fl10Q</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Akram, Ghazala</creator><creator>Sadaf, Maasoomah</creator><creator>Perveen, Zahida</creator><creator>Sarfraz, Maria</creator><creator>Alsubaie, A. S. A.</creator><creator>Inc, Mustafa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</title><author>Akram, Ghazala ; Sadaf, Maasoomah ; Perveen, Zahida ; Sarfraz, Maria ; Alsubaie, A. S. A. ; Inc, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Lasers</topic><topic>Nonlinear phenomena</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma physics</topic><topic>Solitary waves</topic><topic>Surface water</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akram, Ghazala</creatorcontrib><creatorcontrib>Sadaf, Maasoomah</creatorcontrib><creatorcontrib>Perveen, Zahida</creatorcontrib><creatorcontrib>Sarfraz, Maria</creatorcontrib><creatorcontrib>Alsubaie, A. S. A.</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akram, Ghazala</au><au>Sadaf, Maasoomah</au><au>Perveen, Zahida</au><au>Sarfraz, Maria</au><au>Alsubaie, A. S. A.</au><au>Inc, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>56</volume><issue>3</issue><artnum>325</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-023-05758-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2024-03, Vol.56 (3), Article 325 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_proquest_journals_2907790718 |
source | SpringerNature Journals |
subjects | Characterization and Evaluation of Materials Computer Communication Networks Electrical Engineering Exact solutions Fluid dynamics Lasers Nonlinear phenomena Optical Devices Optics Photonics Physics Physics and Astronomy Plasma physics Solitary waves Surface water Traveling waves |
title | Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20travelling%20wave%20solutions%20for%20generalized%20(3+1)%20dimensional%20KP%20and%20modified%20KP%20equations&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Akram,%20Ghazala&rft.date=2024-03-01&rft.volume=56&rft.issue=3&rft.artnum=325&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-023-05758-w&rft_dat=%3Cproquest_cross%3E2907790718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907790718&rft_id=info:pmid/&rfr_iscdi=true |