Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations

In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2024-03, Vol.56 (3), Article 325
Hauptverfasser: Akram, Ghazala, Sadaf, Maasoomah, Perveen, Zahida, Sarfraz, Maria, Alsubaie, A. S. A., Inc, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Optical and quantum electronics
container_volume 56
creator Akram, Ghazala
Sadaf, Maasoomah
Perveen, Zahida
Sarfraz, Maria
Alsubaie, A. S. A.
Inc, Mustafa
description In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically.
doi_str_mv 10.1007/s11082-023-05758-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2907790718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907790718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAjSKjN8nMJFlKqQ8s6ELBlSHNo0yZzrTJjFV_vWkruHNxuffCdw6Hg9ApgSsCwK8jISBoBpRlUPBCZOs9NCAFp5kg_G0fDYBBmQlJ5CE6inEOAGVewAC9jz-16XAX9Ier66qZ4XW6cGzrvqvaJmLfBjxzjQu6rr6dxefsklxgWy1cExOga_z4jHVj8aK1la8SkX636vVWfowOvK6jO_ndQ_R6O34Z3WeTp7uH0c0kM5QDSSGZ9dow7V0hp0QYUmpqOCmnhkpJgeVguRQyp1Tkwmk51ZZIS73PgRkv2BCd7XyXoV31LnZq3vYhpYuKSuA8DdlQdEeZ0MYYnFfLUC10-FIE1KZHtetRpR7Vtke1TiK2E8UENzMX_qz_Uf0A-fl10Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907790718</pqid></control><display><type>article</type><title>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</title><source>SpringerNature Journals</source><creator>Akram, Ghazala ; Sadaf, Maasoomah ; Perveen, Zahida ; Sarfraz, Maria ; Alsubaie, A. S. A. ; Inc, Mustafa</creator><creatorcontrib>Akram, Ghazala ; Sadaf, Maasoomah ; Perveen, Zahida ; Sarfraz, Maria ; Alsubaie, A. S. A. ; Inc, Mustafa</creatorcontrib><description>In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-023-05758-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Electrical Engineering ; Exact solutions ; Fluid dynamics ; Lasers ; Nonlinear phenomena ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; Plasma physics ; Solitary waves ; Surface water ; Traveling waves</subject><ispartof>Optical and quantum electronics, 2024-03, Vol.56 (3), Article 325</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</citedby><cites>FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-023-05758-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-023-05758-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Akram, Ghazala</creatorcontrib><creatorcontrib>Sadaf, Maasoomah</creatorcontrib><creatorcontrib>Perveen, Zahida</creatorcontrib><creatorcontrib>Sarfraz, Maria</creatorcontrib><creatorcontrib>Alsubaie, A. S. A.</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><title>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Electrical Engineering</subject><subject>Exact solutions</subject><subject>Fluid dynamics</subject><subject>Lasers</subject><subject>Nonlinear phenomena</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plasma physics</subject><subject>Solitary waves</subject><subject>Surface water</subject><subject>Traveling waves</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAjSKjN8nMJFlKqQ8s6ELBlSHNo0yZzrTJjFV_vWkruHNxuffCdw6Hg9ApgSsCwK8jISBoBpRlUPBCZOs9NCAFp5kg_G0fDYBBmQlJ5CE6inEOAGVewAC9jz-16XAX9Ier66qZ4XW6cGzrvqvaJmLfBjxzjQu6rr6dxefsklxgWy1cExOga_z4jHVj8aK1la8SkX636vVWfowOvK6jO_ndQ_R6O34Z3WeTp7uH0c0kM5QDSSGZ9dow7V0hp0QYUmpqOCmnhkpJgeVguRQyp1Tkwmk51ZZIS73PgRkv2BCd7XyXoV31LnZq3vYhpYuKSuA8DdlQdEeZ0MYYnFfLUC10-FIE1KZHtetRpR7Vtke1TiK2E8UENzMX_qz_Uf0A-fl10Q</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Akram, Ghazala</creator><creator>Sadaf, Maasoomah</creator><creator>Perveen, Zahida</creator><creator>Sarfraz, Maria</creator><creator>Alsubaie, A. S. A.</creator><creator>Inc, Mustafa</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240301</creationdate><title>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</title><author>Akram, Ghazala ; Sadaf, Maasoomah ; Perveen, Zahida ; Sarfraz, Maria ; Alsubaie, A. S. A. ; Inc, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2701-813dfac3afe59b18c16a2c716bc29920340d7989422848ea9bad19d2ff403cf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Electrical Engineering</topic><topic>Exact solutions</topic><topic>Fluid dynamics</topic><topic>Lasers</topic><topic>Nonlinear phenomena</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plasma physics</topic><topic>Solitary waves</topic><topic>Surface water</topic><topic>Traveling waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akram, Ghazala</creatorcontrib><creatorcontrib>Sadaf, Maasoomah</creatorcontrib><creatorcontrib>Perveen, Zahida</creatorcontrib><creatorcontrib>Sarfraz, Maria</creatorcontrib><creatorcontrib>Alsubaie, A. S. A.</creatorcontrib><creatorcontrib>Inc, Mustafa</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akram, Ghazala</au><au>Sadaf, Maasoomah</au><au>Perveen, Zahida</au><au>Sarfraz, Maria</au><au>Alsubaie, A. S. A.</au><au>Inc, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>56</volume><issue>3</issue><artnum>325</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>In this article, the generalized (3+1) dimensional Kadomtsev–Petviashvili (KP) and modified Kadomtsev–Petviashvili equations are explored, along with weak non-linearity, dispersion and disturbances which can demonstrate the expansion of surface water and prolonged waves in fluid dynamics. These models explain numerous nonlinear phenomena in the field of fluid dynamics, plasma physics and many more. Modified auxiliary equation method is implemented to derive analytic exact solutions for the governing equations. Some interesting and new travelling wave patterns have been observed. The obtained results include kink soliton, kinky periodic solitary wave, dark-bright soliton and periodic waves. Furthermore, graphical analysis is performed by selecting appropriate values of parameters in these solutions to explain the dynamic behavior of some different types of solitons. The proposed technique is well organized and proficient to discuss various KP-type equations physically.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-023-05758-w</doi></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2024-03, Vol.56 (3), Article 325
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_2907790718
source SpringerNature Journals
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Electrical Engineering
Exact solutions
Fluid dynamics
Lasers
Nonlinear phenomena
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Plasma physics
Solitary waves
Surface water
Traveling waves
title Exact travelling wave solutions for generalized (3+1) dimensional KP and modified KP equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20travelling%20wave%20solutions%20for%20generalized%20(3+1)%20dimensional%20KP%20and%20modified%20KP%20equations&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Akram,%20Ghazala&rft.date=2024-03-01&rft.volume=56&rft.issue=3&rft.artnum=325&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-023-05758-w&rft_dat=%3Cproquest_cross%3E2907790718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907790718&rft_id=info:pmid/&rfr_iscdi=true