On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters
We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case...
Gespeichert in:
Veröffentlicht in: | Differential equations 2023-11, Vol.59 (11), p.1527-1537 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1537 |
---|---|
container_issue | 11 |
container_start_page | 1527 |
container_title | Differential equations |
container_volume | 59 |
creator | Maksimov, V. I. |
description | We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors. |
doi_str_mv | 10.1134/S00122661230110071 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2907790677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A777811040</galeid><sourcerecordid>A777811040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f4ce6f0e09d8cd04d68ef4ffccfb1cd947a30dd58e0a969eadb7f6b9afda79bb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA89bJ7nazOZZaP6DYgvW8ZJNJTdlu2iRF_PemVPAgSA4DmecZZl5CbhmMGCvK-zcAludVxfICGAPg7IwMWAV1VkBdnJPBsZ8dgUtyFcIGAARn4wFZLXoq6dIFG63rZUenro_edXTpXdvhlhrnE_Dq-s72KD2d7Q_yiNJPGz_ogw3R2_YQUdOl9HKLEX24JhdGdgFvfuqQvD_OVtPnbL54eplO5pkqQMTMlAorAwhC10pDqasaTWmMUqZlSouSywK0HtcIUlQCpW65qVohjZZctG0xJHenuTvv9gcMsdm4g09XhCYXwLmAivNEjU7UWnbY2N646KVKT-PWKtejsel_wjmvU3QlJCE_Ccq7EDyaZuftVvqvhkFzjLv5G3eSipMUEtyv0f_u8o_1DWWjgrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907790677</pqid></control><display><type>article</type><title>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</title><source>SpringerNature Journals</source><creator>Maksimov, V. I.</creator><creatorcontrib>Maksimov, V. I.</creatorcontrib><description>We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S00122661230110071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Control Theory ; Difference and Functional Equations ; Differential equations ; Feedback control ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Ordinary Differential Equations ; Partial Differential Equations ; Robustness (mathematics)</subject><ispartof>Differential equations, 2023-11, Vol.59 (11), p.1527-1537</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-f4ce6f0e09d8cd04d68ef4ffccfb1cd947a30dd58e0a969eadb7f6b9afda79bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S00122661230110071$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S00122661230110071$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maksimov, V. I.</creatorcontrib><title>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors.</description><subject>Algorithms</subject><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Feedback control</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Robustness (mathematics)</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA89bJ7nazOZZaP6DYgvW8ZJNJTdlu2iRF_PemVPAgSA4DmecZZl5CbhmMGCvK-zcAludVxfICGAPg7IwMWAV1VkBdnJPBsZ8dgUtyFcIGAARn4wFZLXoq6dIFG63rZUenro_edXTpXdvhlhrnE_Dq-s72KD2d7Q_yiNJPGz_ogw3R2_YQUdOl9HKLEX24JhdGdgFvfuqQvD_OVtPnbL54eplO5pkqQMTMlAorAwhC10pDqasaTWmMUqZlSouSywK0HtcIUlQCpW65qVohjZZctG0xJHenuTvv9gcMsdm4g09XhCYXwLmAivNEjU7UWnbY2N646KVKT-PWKtejsel_wjmvU3QlJCE_Ccq7EDyaZuftVvqvhkFzjLv5G3eSipMUEtyv0f_u8o_1DWWjgrs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Maksimov, V. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</title><author>Maksimov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f4ce6f0e09d8cd04d68ef4ffccfb1cd947a30dd58e0a969eadb7f6b9afda79bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Feedback control</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksimov, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksimov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1527</spage><epage>1537</epage><pages>1527-1537</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S00122661230110071</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2023-11, Vol.59 (11), p.1527-1537 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_journals_2907790677 |
source | SpringerNature Journals |
subjects | Algorithms Control Theory Difference and Functional Equations Differential equations Feedback control Mathematical analysis Mathematics Mathematics and Statistics Nonlinear equations Ordinary Differential Equations Partial Differential Equations Robustness (mathematics) |
title | On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Positional%20Control%20Problem%20for%20a%20Nonlinear%20Equation%20with%20Distributed%20Parameters&rft.jtitle=Differential%20equations&rft.au=Maksimov,%20V.%20I.&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1527&rft.epage=1537&rft.pages=1527-1537&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S00122661230110071&rft_dat=%3Cgale_proqu%3EA777811040%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907790677&rft_id=info:pmid/&rft_galeid=A777811040&rfr_iscdi=true |