On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters

We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2023-11, Vol.59 (11), p.1527-1537
1. Verfasser: Maksimov, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1537
container_issue 11
container_start_page 1527
container_title Differential equations
container_volume 59
creator Maksimov, V. I.
description We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors.
doi_str_mv 10.1134/S00122661230110071
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2907790677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A777811040</galeid><sourcerecordid>A777811040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-f4ce6f0e09d8cd04d68ef4ffccfb1cd947a30dd58e0a969eadb7f6b9afda79bb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA89bJ7nazOZZaP6DYgvW8ZJNJTdlu2iRF_PemVPAgSA4DmecZZl5CbhmMGCvK-zcAludVxfICGAPg7IwMWAV1VkBdnJPBsZ8dgUtyFcIGAARn4wFZLXoq6dIFG63rZUenro_edXTpXdvhlhrnE_Dq-s72KD2d7Q_yiNJPGz_ogw3R2_YQUdOl9HKLEX24JhdGdgFvfuqQvD_OVtPnbL54eplO5pkqQMTMlAorAwhC10pDqasaTWmMUqZlSouSywK0HtcIUlQCpW65qVohjZZctG0xJHenuTvv9gcMsdm4g09XhCYXwLmAivNEjU7UWnbY2N646KVKT-PWKtejsel_wjmvU3QlJCE_Ccq7EDyaZuftVvqvhkFzjLv5G3eSipMUEtyv0f_u8o_1DWWjgrs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907790677</pqid></control><display><type>article</type><title>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</title><source>SpringerNature Journals</source><creator>Maksimov, V. I.</creator><creatorcontrib>Maksimov, V. I.</creatorcontrib><description>We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S00122661230110071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Control Theory ; Difference and Functional Equations ; Differential equations ; Feedback control ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Nonlinear equations ; Ordinary Differential Equations ; Partial Differential Equations ; Robustness (mathematics)</subject><ispartof>Differential equations, 2023-11, Vol.59 (11), p.1527-1537</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>COPYRIGHT 2023 Springer</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-f4ce6f0e09d8cd04d68ef4ffccfb1cd947a30dd58e0a969eadb7f6b9afda79bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S00122661230110071$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S00122661230110071$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maksimov, V. I.</creatorcontrib><title>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors.</description><subject>Algorithms</subject><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Feedback control</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear equations</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Robustness (mathematics)</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA89bJ7nazOZZaP6DYgvW8ZJNJTdlu2iRF_PemVPAgSA4DmecZZl5CbhmMGCvK-zcAludVxfICGAPg7IwMWAV1VkBdnJPBsZ8dgUtyFcIGAARn4wFZLXoq6dIFG63rZUenro_edXTpXdvhlhrnE_Dq-s72KD2d7Q_yiNJPGz_ogw3R2_YQUdOl9HKLEX24JhdGdgFvfuqQvD_OVtPnbL54eplO5pkqQMTMlAorAwhC10pDqasaTWmMUqZlSouSywK0HtcIUlQCpW65qVohjZZctG0xJHenuTvv9gcMsdm4g09XhCYXwLmAivNEjU7UWnbY2N646KVKT-PWKtejsel_wjmvU3QlJCE_Ccq7EDyaZuftVvqvhkFzjLv5G3eSipMUEtyv0f_u8o_1DWWjgrs</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Maksimov, V. I.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20231101</creationdate><title>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</title><author>Maksimov, V. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-f4ce6f0e09d8cd04d68ef4ffccfb1cd947a30dd58e0a969eadb7f6b9afda79bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Feedback control</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear equations</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksimov, V. I.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksimov, V. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>59</volume><issue>11</issue><spage>1527</spage><epage>1537</epage><pages>1527-1537</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider a guaranteed control problem for a nonlinear distributed equation of diffusion type. The problem is essentially to construct a feedback control algorithm ensuring that the solution of a given equation tracks the solution of a similar equation subjected to an unknown disturbance. The case in which a discontinuous unbounded function can be a feasible disturbance is studied. We solve the problem under conditions of inaccurate measurement of solutions of each of the equations at discrete instants of time and indicate a solution algorithm robust under information noise and calculation errors.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S00122661230110071</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2023-11, Vol.59 (11), p.1527-1537
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_journals_2907790677
source SpringerNature Journals
subjects Algorithms
Control Theory
Difference and Functional Equations
Differential equations
Feedback control
Mathematical analysis
Mathematics
Mathematics and Statistics
Nonlinear equations
Ordinary Differential Equations
Partial Differential Equations
Robustness (mathematics)
title On a Positional Control Problem for a Nonlinear Equation with Distributed Parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Positional%20Control%20Problem%20for%20a%20Nonlinear%20Equation%20with%20Distributed%20Parameters&rft.jtitle=Differential%20equations&rft.au=Maksimov,%20V.%20I.&rft.date=2023-11-01&rft.volume=59&rft.issue=11&rft.spage=1527&rft.epage=1537&rft.pages=1527-1537&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S00122661230110071&rft_dat=%3Cgale_proqu%3EA777811040%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907790677&rft_id=info:pmid/&rft_galeid=A777811040&rfr_iscdi=true