Generalized Mask-aware IoU for Anchor Assignment for Real-time Instance Segmentation
This paper introduces Generalized Mask-aware Intersection-over-Union (GmaIoU) as a new measure for positive-negative assignment of anchor boxes during training of instance segmentation methods. Unlike conventional IoU measure or its variants, which only consider the proximity of anchor and ground-tr...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Barış Can Çam Öksüz, Kemal Kahraman, Fehmi Zeynep Sonat Baltacı Kalkan, Sinan Akbaş, Emre |
description | This paper introduces Generalized Mask-aware Intersection-over-Union (GmaIoU) as a new measure for positive-negative assignment of anchor boxes during training of instance segmentation methods. Unlike conventional IoU measure or its variants, which only consider the proximity of anchor and ground-truth boxes; GmaIoU additionally takes into account the segmentation mask. This enables GmaIoU to provide more accurate supervision during training. We demonstrate the effectiveness of GmaIoU by replacing IoU with our GmaIoU in ATSS, a state-of-the-art (SOTA) assigner. Then, we train YOLACT, a real-time instance segmentation method, using our GmaIoU-based ATSS assigner. The resulting YOLACT based on the GmaIoU assigner outperforms (i) ATSS with IoU by \(\sim 1.0-1.5\) mask AP, (ii) YOLACT with a fixed IoU threshold assigner by \(\sim 1.5-2\) mask AP over different image sizes and (iii) decreases the inference time by \(25 \%\) owing to using less anchors. Taking advantage of this efficiency, we further devise GmaYOLACT, a faster and \(+7\) mask AP points more accurate detector than YOLACT. Our best model achieves \(38.7\) mask AP at \(26\) fps on COCO test-dev establishing a new state-of-the-art for real-time instance segmentation. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2907599329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907599329</sourcerecordid><originalsourceid>FETCH-proquest_journals_29075993293</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgO1MRasxTxt3CjdV1Cfa2pbaJ5KYKntxUP4GpgZgYk4ELM2HLO-YiEiFUURXyR8DgWAUl3YMCpWr_hSo8K70y9lAN6sBdaWEdXJr_1QNSlacD4rz2BqpnXTfcZ9MrkQM9Q9ll5bc2EDAtVI4Q_jsl0u0nXe_Zw9tkC-qyyrTNdyriMklhKwaX47_oAPKVALA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907599329</pqid></control><display><type>article</type><title>Generalized Mask-aware IoU for Anchor Assignment for Real-time Instance Segmentation</title><source>Freely Accessible Journals</source><creator>Barış Can Çam ; Öksüz, Kemal ; Kahraman, Fehmi ; Zeynep Sonat Baltacı ; Kalkan, Sinan ; Akbaş, Emre</creator><creatorcontrib>Barış Can Çam ; Öksüz, Kemal ; Kahraman, Fehmi ; Zeynep Sonat Baltacı ; Kalkan, Sinan ; Akbaş, Emre</creatorcontrib><description>This paper introduces Generalized Mask-aware Intersection-over-Union (GmaIoU) as a new measure for positive-negative assignment of anchor boxes during training of instance segmentation methods. Unlike conventional IoU measure or its variants, which only consider the proximity of anchor and ground-truth boxes; GmaIoU additionally takes into account the segmentation mask. This enables GmaIoU to provide more accurate supervision during training. We demonstrate the effectiveness of GmaIoU by replacing IoU with our GmaIoU in ATSS, a state-of-the-art (SOTA) assigner. Then, we train YOLACT, a real-time instance segmentation method, using our GmaIoU-based ATSS assigner. The resulting YOLACT based on the GmaIoU assigner outperforms (i) ATSS with IoU by \(\sim 1.0-1.5\) mask AP, (ii) YOLACT with a fixed IoU threshold assigner by \(\sim 1.5-2\) mask AP over different image sizes and (iii) decreases the inference time by \(25 \%\) owing to using less anchors. Taking advantage of this efficiency, we further devise GmaYOLACT, a faster and \(+7\) mask AP points more accurate detector than YOLACT. Our best model achieves \(38.7\) mask AP at \(26\) fps on COCO test-dev establishing a new state-of-the-art for real-time instance segmentation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boxes ; Instance segmentation ; Real time ; Training</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Barış Can Çam</creatorcontrib><creatorcontrib>Öksüz, Kemal</creatorcontrib><creatorcontrib>Kahraman, Fehmi</creatorcontrib><creatorcontrib>Zeynep Sonat Baltacı</creatorcontrib><creatorcontrib>Kalkan, Sinan</creatorcontrib><creatorcontrib>Akbaş, Emre</creatorcontrib><title>Generalized Mask-aware IoU for Anchor Assignment for Real-time Instance Segmentation</title><title>arXiv.org</title><description>This paper introduces Generalized Mask-aware Intersection-over-Union (GmaIoU) as a new measure for positive-negative assignment of anchor boxes during training of instance segmentation methods. Unlike conventional IoU measure or its variants, which only consider the proximity of anchor and ground-truth boxes; GmaIoU additionally takes into account the segmentation mask. This enables GmaIoU to provide more accurate supervision during training. We demonstrate the effectiveness of GmaIoU by replacing IoU with our GmaIoU in ATSS, a state-of-the-art (SOTA) assigner. Then, we train YOLACT, a real-time instance segmentation method, using our GmaIoU-based ATSS assigner. The resulting YOLACT based on the GmaIoU assigner outperforms (i) ATSS with IoU by \(\sim 1.0-1.5\) mask AP, (ii) YOLACT with a fixed IoU threshold assigner by \(\sim 1.5-2\) mask AP over different image sizes and (iii) decreases the inference time by \(25 \%\) owing to using less anchors. Taking advantage of this efficiency, we further devise GmaYOLACT, a faster and \(+7\) mask AP points more accurate detector than YOLACT. Our best model achieves \(38.7\) mask AP at \(26\) fps on COCO test-dev establishing a new state-of-the-art for real-time instance segmentation.</description><subject>Boxes</subject><subject>Instance segmentation</subject><subject>Real time</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgO1MRasxTxt3CjdV1Cfa2pbaJ5KYKntxUP4GpgZgYk4ELM2HLO-YiEiFUURXyR8DgWAUl3YMCpWr_hSo8K70y9lAN6sBdaWEdXJr_1QNSlacD4rz2BqpnXTfcZ9MrkQM9Q9ll5bc2EDAtVI4Q_jsl0u0nXe_Zw9tkC-qyyrTNdyriMklhKwaX47_oAPKVALA</recordid><startdate>20231228</startdate><enddate>20231228</enddate><creator>Barış Can Çam</creator><creator>Öksüz, Kemal</creator><creator>Kahraman, Fehmi</creator><creator>Zeynep Sonat Baltacı</creator><creator>Kalkan, Sinan</creator><creator>Akbaş, Emre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231228</creationdate><title>Generalized Mask-aware IoU for Anchor Assignment for Real-time Instance Segmentation</title><author>Barış Can Çam ; Öksüz, Kemal ; Kahraman, Fehmi ; Zeynep Sonat Baltacı ; Kalkan, Sinan ; Akbaş, Emre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29075993293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boxes</topic><topic>Instance segmentation</topic><topic>Real time</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Barış Can Çam</creatorcontrib><creatorcontrib>Öksüz, Kemal</creatorcontrib><creatorcontrib>Kahraman, Fehmi</creatorcontrib><creatorcontrib>Zeynep Sonat Baltacı</creatorcontrib><creatorcontrib>Kalkan, Sinan</creatorcontrib><creatorcontrib>Akbaş, Emre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barış Can Çam</au><au>Öksüz, Kemal</au><au>Kahraman, Fehmi</au><au>Zeynep Sonat Baltacı</au><au>Kalkan, Sinan</au><au>Akbaş, Emre</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Generalized Mask-aware IoU for Anchor Assignment for Real-time Instance Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2023-12-28</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This paper introduces Generalized Mask-aware Intersection-over-Union (GmaIoU) as a new measure for positive-negative assignment of anchor boxes during training of instance segmentation methods. Unlike conventional IoU measure or its variants, which only consider the proximity of anchor and ground-truth boxes; GmaIoU additionally takes into account the segmentation mask. This enables GmaIoU to provide more accurate supervision during training. We demonstrate the effectiveness of GmaIoU by replacing IoU with our GmaIoU in ATSS, a state-of-the-art (SOTA) assigner. Then, we train YOLACT, a real-time instance segmentation method, using our GmaIoU-based ATSS assigner. The resulting YOLACT based on the GmaIoU assigner outperforms (i) ATSS with IoU by \(\sim 1.0-1.5\) mask AP, (ii) YOLACT with a fixed IoU threshold assigner by \(\sim 1.5-2\) mask AP over different image sizes and (iii) decreases the inference time by \(25 \%\) owing to using less anchors. Taking advantage of this efficiency, we further devise GmaYOLACT, a faster and \(+7\) mask AP points more accurate detector than YOLACT. Our best model achieves \(38.7\) mask AP at \(26\) fps on COCO test-dev establishing a new state-of-the-art for real-time instance segmentation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2907599329 |
source | Freely Accessible Journals |
subjects | Boxes Instance segmentation Real time Training |
title | Generalized Mask-aware IoU for Anchor Assignment for Real-time Instance Segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Generalized%20Mask-aware%20IoU%20for%20Anchor%20Assignment%20for%20Real-time%20Instance%20Segmentation&rft.jtitle=arXiv.org&rft.au=Bar%C4%B1%C5%9F%20Can%20%C3%87am&rft.date=2023-12-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2907599329%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907599329&rft_id=info:pmid/&rfr_iscdi=true |