Adaptive Flip Graph Algorithm for Matrix Multiplication
This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient sear...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arai, Yamato Ichikawa, Yuma Hukushima, Koji |
description | This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2907598254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907598254</sourcerecordid><originalsourceid>FETCH-proquest_journals_29075982543</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC_GmMe1YxOrSzb0ETe0tsYn5ER9fBx_A6QzfWZAMON8VVQmwInkIE2MM9hKE4BmRzU25iC9NW4OOnrxyI23M3XqM44MO1tNORY9v2iUT0Rm8qoh23pDloEzQ-a9rsm2Pl8O5cN4-kw6xn2zy85d6qJkUdQWi5P9dH_jONb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907598254</pqid></control><display><type>article</type><title>Adaptive Flip Graph Algorithm for Matrix Multiplication</title><source>Free E- Journals</source><creator>Arai, Yamato ; Ichikawa, Yuma ; Hukushima, Koji</creator><creatorcontrib>Arai, Yamato ; Ichikawa, Yuma ; Hukushima, Koji</creatorcontrib><description>This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive algorithms ; Algorithms ; Multiplication ; Searching</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Arai, Yamato</creatorcontrib><creatorcontrib>Ichikawa, Yuma</creatorcontrib><creatorcontrib>Hukushima, Koji</creatorcontrib><title>Adaptive Flip Graph Algorithm for Matrix Multiplication</title><title>arXiv.org</title><description>This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Multiplication</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC_GmMe1YxOrSzb0ETe0tsYn5ER9fBx_A6QzfWZAMON8VVQmwInkIE2MM9hKE4BmRzU25iC9NW4OOnrxyI23M3XqM44MO1tNORY9v2iUT0Rm8qoh23pDloEzQ-a9rsm2Pl8O5cN4-kw6xn2zy85d6qJkUdQWi5P9dH_jONb4</recordid><startdate>20240316</startdate><enddate>20240316</enddate><creator>Arai, Yamato</creator><creator>Ichikawa, Yuma</creator><creator>Hukushima, Koji</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240316</creationdate><title>Adaptive Flip Graph Algorithm for Matrix Multiplication</title><author>Arai, Yamato ; Ichikawa, Yuma ; Hukushima, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29075982543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Multiplication</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Arai, Yamato</creatorcontrib><creatorcontrib>Ichikawa, Yuma</creatorcontrib><creatorcontrib>Hukushima, Koji</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arai, Yamato</au><au>Ichikawa, Yuma</au><au>Hukushima, Koji</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive Flip Graph Algorithm for Matrix Multiplication</atitle><jtitle>arXiv.org</jtitle><date>2024-03-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2907598254 |
source | Free E- Journals |
subjects | Adaptive algorithms Algorithms Multiplication Searching |
title | Adaptive Flip Graph Algorithm for Matrix Multiplication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20Flip%20Graph%20Algorithm%20for%20Matrix%20Multiplication&rft.jtitle=arXiv.org&rft.au=Arai,%20Yamato&rft.date=2024-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2907598254%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907598254&rft_id=info:pmid/&rfr_iscdi=true |