Adaptive Flip Graph Algorithm for Matrix Multiplication

This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient sear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Arai, Yamato, Ichikawa, Yuma, Hukushima, Koji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arai, Yamato
Ichikawa, Yuma
Hukushima, Koji
description This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2907598254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907598254</sourcerecordid><originalsourceid>FETCH-proquest_journals_29075982543</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC_GmMe1YxOrSzb0ETe0tsYn5ER9fBx_A6QzfWZAMON8VVQmwInkIE2MM9hKE4BmRzU25iC9NW4OOnrxyI23M3XqM44MO1tNORY9v2iUT0Rm8qoh23pDloEzQ-a9rsm2Pl8O5cN4-kw6xn2zy85d6qJkUdQWi5P9dH_jONb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907598254</pqid></control><display><type>article</type><title>Adaptive Flip Graph Algorithm for Matrix Multiplication</title><source>Free E- Journals</source><creator>Arai, Yamato ; Ichikawa, Yuma ; Hukushima, Koji</creator><creatorcontrib>Arai, Yamato ; Ichikawa, Yuma ; Hukushima, Koji</creatorcontrib><description>This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptive algorithms ; Algorithms ; Multiplication ; Searching</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Arai, Yamato</creatorcontrib><creatorcontrib>Ichikawa, Yuma</creatorcontrib><creatorcontrib>Hukushima, Koji</creatorcontrib><title>Adaptive Flip Graph Algorithm for Matrix Multiplication</title><title>arXiv.org</title><description>This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two.</description><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Multiplication</subject><subject>Searching</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC_GmMe1YxOrSzb0ETe0tsYn5ER9fBx_A6QzfWZAMON8VVQmwInkIE2MM9hKE4BmRzU25iC9NW4OOnrxyI23M3XqM44MO1tNORY9v2iUT0Rm8qoh23pDloEzQ-a9rsm2Pl8O5cN4-kw6xn2zy85d6qJkUdQWi5P9dH_jONb4</recordid><startdate>20240316</startdate><enddate>20240316</enddate><creator>Arai, Yamato</creator><creator>Ichikawa, Yuma</creator><creator>Hukushima, Koji</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240316</creationdate><title>Adaptive Flip Graph Algorithm for Matrix Multiplication</title><author>Arai, Yamato ; Ichikawa, Yuma ; Hukushima, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29075982543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Multiplication</topic><topic>Searching</topic><toplevel>online_resources</toplevel><creatorcontrib>Arai, Yamato</creatorcontrib><creatorcontrib>Ichikawa, Yuma</creatorcontrib><creatorcontrib>Hukushima, Koji</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arai, Yamato</au><au>Ichikawa, Yuma</au><au>Hukushima, Koji</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive Flip Graph Algorithm for Matrix Multiplication</atitle><jtitle>arXiv.org</jtitle><date>2024-03-16</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This study proposes the "adaptive flip graph algorithm", which combines adaptive searches with the flip graph algorithm for finding fast and efficient methods for matrix multiplication. The adaptive flip graph algorithm addresses the inherent limitations of exploration and inefficient search encountered in the original flip graph algorithm, particularly when dealing with large matrix multiplication. For the limitation of exploration, the proposed algorithm adaptively transitions over the flip graph, introducing a flexibility that does not strictly reduce the number of multiplications. Concerning the issue of inefficient search in large instances, the proposed algorithm adaptively constraints the search range instead of relying on a completely random search, facilitating more effective exploration. Numerical experimental results demonstrate the effectiveness of the adaptive flip graph algorithm, showing a reduction in the number of multiplications for a \(4\times 5\) matrix multiplied by a \(5\times 5\) matrix from \(76\) to \(73\), and that from \(95\) to \(94\) for a \(5 \times 5\) matrix multiplied by another \(5\times 5\) matrix. These results are obtained in characteristic two.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2907598254
source Free E- Journals
subjects Adaptive algorithms
Algorithms
Multiplication
Searching
title Adaptive Flip Graph Algorithm for Matrix Multiplication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T04%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20Flip%20Graph%20Algorithm%20for%20Matrix%20Multiplication&rft.jtitle=arXiv.org&rft.au=Arai,%20Yamato&rft.date=2024-03-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2907598254%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907598254&rft_id=info:pmid/&rfr_iscdi=true