DarkShot: Lighting Dark Images with Low-Compute and High-Quality

Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, mos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Zheng, Jiazhang, Li, Lei, Liao, Qiuping, Cheng, Li, Li, Li, Liu, Yangxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zheng, Jiazhang
Li, Lei
Liao, Qiuping
Cheng, Li
Li, Li
Liu, Yangxing
description Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, most existing methods are either focused on improving restoration performance or employ lightweight models at the cost of quality. This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks while minimizing computation. The proposed network incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention (SCA) modules, which enhance the model's capacity to aggregate global information and are well-suited for high-resolution images. Additionally, based on our analysis of the low-light image restoration process, we propose a Two-Stage Framework that achieves superior results. Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2907598119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907598119</sourcerecordid><originalsourceid>FETCH-proquest_journals_29075981193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcEksyg7OyC-xUvDJTM8oycxLVwAJKXjmJqanFiuUZ5ZkKPjkl-s65-cWlJakKiTmpSh4AFXqBpYm5mSWVPIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRpYG5qaWFoaGlMXGqAMKcODQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907598119</pqid></control><display><type>article</type><title>DarkShot: Lighting Dark Images with Low-Compute and High-Quality</title><source>Free E- Journals</source><creator>Zheng, Jiazhang ; Li, Lei ; Liao, Qiuping ; Cheng, Li ; Li, Li ; Liu, Yangxing</creator><creatorcontrib>Zheng, Jiazhang ; Li, Lei ; Liao, Qiuping ; Cheng, Li ; Li, Li ; Liu, Yangxing</creatorcontrib><description>Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, most existing methods are either focused on improving restoration performance or employ lightweight models at the cost of quality. This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks while minimizing computation. The proposed network incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention (SCA) modules, which enhance the model's capacity to aggregate global information and are well-suited for high-resolution images. Additionally, based on our analysis of the low-light image restoration process, we propose a Two-Stage Framework that achieves superior results. Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computation ; Image quality ; Image resolution ; Image restoration ; Lightweight ; Signal to noise ratio</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Zheng, Jiazhang</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Liao, Qiuping</creatorcontrib><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Liu, Yangxing</creatorcontrib><title>DarkShot: Lighting Dark Images with Low-Compute and High-Quality</title><title>arXiv.org</title><description>Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, most existing methods are either focused on improving restoration performance or employ lightweight models at the cost of quality. This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks while minimizing computation. The proposed network incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention (SCA) modules, which enhance the model's capacity to aggregate global information and are well-suited for high-resolution images. Additionally, based on our analysis of the low-light image restoration process, we propose a Two-Stage Framework that achieves superior results. Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality.</description><subject>Computation</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Image restoration</subject><subject>Lightweight</subject><subject>Signal to noise ratio</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwcEksyg7OyC-xUvDJTM8oycxLVwAJKXjmJqanFiuUZ5ZkKPjkl-s65-cWlJakKiTmpSh4AFXqBpYm5mSWVPIwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyRpYG5qaWFoaGlMXGqAMKcODQ</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Zheng, Jiazhang</creator><creator>Li, Lei</creator><creator>Liao, Qiuping</creator><creator>Cheng, Li</creator><creator>Li, Li</creator><creator>Liu, Yangxing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240110</creationdate><title>DarkShot: Lighting Dark Images with Low-Compute and High-Quality</title><author>Zheng, Jiazhang ; Li, Lei ; Liao, Qiuping ; Cheng, Li ; Li, Li ; Liu, Yangxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29075981193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computation</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Image restoration</topic><topic>Lightweight</topic><topic>Signal to noise ratio</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jiazhang</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><creatorcontrib>Liao, Qiuping</creatorcontrib><creatorcontrib>Cheng, Li</creatorcontrib><creatorcontrib>Li, Li</creatorcontrib><creatorcontrib>Liu, Yangxing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jiazhang</au><au>Li, Lei</au><au>Liao, Qiuping</au><au>Cheng, Li</au><au>Li, Li</au><au>Liu, Yangxing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DarkShot: Lighting Dark Images with Low-Compute and High-Quality</atitle><jtitle>arXiv.org</jtitle><date>2024-01-10</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Nighttime photography encounters escalating challenges in extremely low-light conditions, primarily attributable to the ultra-low signal-to-noise ratio. For real-world deployment, a practical solution must not only produce visually appealing results but also require minimal computation. However, most existing methods are either focused on improving restoration performance or employ lightweight models at the cost of quality. This paper proposes a lightweight network that outperforms existing state-of-the-art (SOTA) methods in low-light enhancement tasks while minimizing computation. The proposed network incorporates Siamese Self-Attention Block (SSAB) and Skip-Channel Attention (SCA) modules, which enhance the model's capacity to aggregate global information and are well-suited for high-resolution images. Additionally, based on our analysis of the low-light image restoration process, we propose a Two-Stage Framework that achieves superior results. Our model can restore a UHD 4K resolution image with minimal computation while keeping SOTA restoration quality.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2907598119
source Free E- Journals
subjects Computation
Image quality
Image resolution
Image restoration
Lightweight
Signal to noise ratio
title DarkShot: Lighting Dark Images with Low-Compute and High-Quality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DarkShot:%20Lighting%20Dark%20Images%20with%20Low-Compute%20and%20High-Quality&rft.jtitle=arXiv.org&rft.au=Zheng,%20Jiazhang&rft.date=2024-01-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2907598119%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907598119&rft_id=info:pmid/&rfr_iscdi=true