Progressive augmentation of turbulence models for flow separation by multi-case computational fluid dynamics driven surrogate optimization

In the field of data-driven turbulence modeling, the consistency of the a posteriori results and generalizability are the most critical aspects of new models. In this study, we combine a multi-case surrogate optimization technique with a progressive augmentation approach to enhance the performance o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2023-12, Vol.35 (12)
Hauptverfasser: Amarloo, Ali, Rincón, Mario Javier, Reclari, Martino, Abkar, Mahdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 35
creator Amarloo, Ali
Rincón, Mario Javier
Reclari, Martino
Abkar, Mahdi
description In the field of data-driven turbulence modeling, the consistency of the a posteriori results and generalizability are the most critical aspects of new models. In this study, we combine a multi-case surrogate optimization technique with a progressive augmentation approach to enhance the performance of the popular k − ω shear stress transport (SST) turbulence model in the prediction of flow separation. We introduce a separation factor into the transport equation of a turbulent specific dissipation rate (ω) to correct the underestimation of the turbulent viscosity by the k − ω SST model in the case of flow separation for two-dimensional cases. The new model is optimized based on their performance on the training cases including periodic hills and curved backward-facing step flow. Simulation of the channel flow is likewise included in the optimization process to guarantee that the original performance of k − ω SST is preserved in the absence of separation. The new model is verified on multiple unseen cases with different Reynolds numbers and geometries. Results show a significant improvement in the prediction of the recirculation zone, velocity components, and distribution of the friction coefficient in both training and testing cases, where flow separation is expected. The performance of the new models on the test case with no separation shows that they preserve the successful performance of k − ω SST when flow separation is not expected.
doi_str_mv 10.1063/5.0174470
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2907546421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907546421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-67274170f0eb4dd6e53c6519ccf6657efdbde04b961fc940120a59118a096e5a3</originalsourceid><addsrcrecordid>eNp90MlOwzAQBmALgUQpHHgDS5xAShknjt0cUcUmVYIDnCPHS-UqiYMXUHkEnpqU9Mxp5vDpnwWhSwILAqy4LRdAOKUcjtCMwLLKOGPseN9zyBgryCk6C2ELAEWVsxn6efVu43UI9lNjkTad7qOI1vXYGRyTb1Kre6lx55RuAzbOY9O6Lxz0IPwEmx3uUhttJkXQWLpuSFOEaEebrMJq14vOyoCVH8f0OCQ_ThVRYzdE29nvP36OToxog7441Dl6f7h_Wz1l65fH59XdOpNFzmPGeM4p4WBAN1QppstCspJUUhrGSq6NapQG2lSMGFlRIDmIsiJkKaAasSjm6GrKHbz7SDrEeuuSH7cNdV4BLymjORnV9aSkdyF4berB2074XU2g3r-6LuvDq0d7M9kg7XT6P_gX8CSBsw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907546421</pqid></control><display><type>article</type><title>Progressive augmentation of turbulence models for flow separation by multi-case computational fluid dynamics driven surrogate optimization</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Amarloo, Ali ; Rincón, Mario Javier ; Reclari, Martino ; Abkar, Mahdi</creator><creatorcontrib>Amarloo, Ali ; Rincón, Mario Javier ; Reclari, Martino ; Abkar, Mahdi</creatorcontrib><description>In the field of data-driven turbulence modeling, the consistency of the a posteriori results and generalizability are the most critical aspects of new models. In this study, we combine a multi-case surrogate optimization technique with a progressive augmentation approach to enhance the performance of the popular k − ω shear stress transport (SST) turbulence model in the prediction of flow separation. We introduce a separation factor into the transport equation of a turbulent specific dissipation rate (ω) to correct the underestimation of the turbulent viscosity by the k − ω SST model in the case of flow separation for two-dimensional cases. The new model is optimized based on their performance on the training cases including periodic hills and curved backward-facing step flow. Simulation of the channel flow is likewise included in the optimization process to guarantee that the original performance of k − ω SST is preserved in the absence of separation. The new model is verified on multiple unseen cases with different Reynolds numbers and geometries. Results show a significant improvement in the prediction of the recirculation zone, velocity components, and distribution of the friction coefficient in both training and testing cases, where flow separation is expected. The performance of the new models on the test case with no separation shows that they preserve the successful performance of k − ω SST when flow separation is not expected.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0174470</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Backward facing steps ; Channel flow ; Coefficient of friction ; Computational fluid dynamics ; Dissipation factor ; Flow separation ; Fluid flow ; Optimization ; Optimization techniques ; Reynolds number ; Shear stress ; Training ; Transport equations ; Turbulence models ; Turbulent flow ; Two dimensional flow</subject><ispartof>Physics of fluids (1994), 2023-12, Vol.35 (12)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-67274170f0eb4dd6e53c6519ccf6657efdbde04b961fc940120a59118a096e5a3</citedby><cites>FETCH-LOGICAL-c327t-67274170f0eb4dd6e53c6519ccf6657efdbde04b961fc940120a59118a096e5a3</cites><orcidid>0000-0001-8677-7723 ; 0000-0001-9790-7335 ; 0000-0002-6220-870X ; 0000-0003-3239-6612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Amarloo, Ali</creatorcontrib><creatorcontrib>Rincón, Mario Javier</creatorcontrib><creatorcontrib>Reclari, Martino</creatorcontrib><creatorcontrib>Abkar, Mahdi</creatorcontrib><title>Progressive augmentation of turbulence models for flow separation by multi-case computational fluid dynamics driven surrogate optimization</title><title>Physics of fluids (1994)</title><description>In the field of data-driven turbulence modeling, the consistency of the a posteriori results and generalizability are the most critical aspects of new models. In this study, we combine a multi-case surrogate optimization technique with a progressive augmentation approach to enhance the performance of the popular k − ω shear stress transport (SST) turbulence model in the prediction of flow separation. We introduce a separation factor into the transport equation of a turbulent specific dissipation rate (ω) to correct the underestimation of the turbulent viscosity by the k − ω SST model in the case of flow separation for two-dimensional cases. The new model is optimized based on their performance on the training cases including periodic hills and curved backward-facing step flow. Simulation of the channel flow is likewise included in the optimization process to guarantee that the original performance of k − ω SST is preserved in the absence of separation. The new model is verified on multiple unseen cases with different Reynolds numbers and geometries. Results show a significant improvement in the prediction of the recirculation zone, velocity components, and distribution of the friction coefficient in both training and testing cases, where flow separation is expected. The performance of the new models on the test case with no separation shows that they preserve the successful performance of k − ω SST when flow separation is not expected.</description><subject>Backward facing steps</subject><subject>Channel flow</subject><subject>Coefficient of friction</subject><subject>Computational fluid dynamics</subject><subject>Dissipation factor</subject><subject>Flow separation</subject><subject>Fluid flow</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Training</subject><subject>Transport equations</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Two dimensional flow</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MlOwzAQBmALgUQpHHgDS5xAShknjt0cUcUmVYIDnCPHS-UqiYMXUHkEnpqU9Mxp5vDpnwWhSwILAqy4LRdAOKUcjtCMwLLKOGPseN9zyBgryCk6C2ELAEWVsxn6efVu43UI9lNjkTad7qOI1vXYGRyTb1Kre6lx55RuAzbOY9O6Lxz0IPwEmx3uUhttJkXQWLpuSFOEaEebrMJq14vOyoCVH8f0OCQ_ThVRYzdE29nvP36OToxog7441Dl6f7h_Wz1l65fH59XdOpNFzmPGeM4p4WBAN1QppstCspJUUhrGSq6NapQG2lSMGFlRIDmIsiJkKaAasSjm6GrKHbz7SDrEeuuSH7cNdV4BLymjORnV9aSkdyF4berB2074XU2g3r-6LuvDq0d7M9kg7XT6P_gX8CSBsw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Amarloo, Ali</creator><creator>Rincón, Mario Javier</creator><creator>Reclari, Martino</creator><creator>Abkar, Mahdi</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8677-7723</orcidid><orcidid>https://orcid.org/0000-0001-9790-7335</orcidid><orcidid>https://orcid.org/0000-0002-6220-870X</orcidid><orcidid>https://orcid.org/0000-0003-3239-6612</orcidid></search><sort><creationdate>202312</creationdate><title>Progressive augmentation of turbulence models for flow separation by multi-case computational fluid dynamics driven surrogate optimization</title><author>Amarloo, Ali ; Rincón, Mario Javier ; Reclari, Martino ; Abkar, Mahdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-67274170f0eb4dd6e53c6519ccf6657efdbde04b961fc940120a59118a096e5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Backward facing steps</topic><topic>Channel flow</topic><topic>Coefficient of friction</topic><topic>Computational fluid dynamics</topic><topic>Dissipation factor</topic><topic>Flow separation</topic><topic>Fluid flow</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Training</topic><topic>Transport equations</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amarloo, Ali</creatorcontrib><creatorcontrib>Rincón, Mario Javier</creatorcontrib><creatorcontrib>Reclari, Martino</creatorcontrib><creatorcontrib>Abkar, Mahdi</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amarloo, Ali</au><au>Rincón, Mario Javier</au><au>Reclari, Martino</au><au>Abkar, Mahdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progressive augmentation of turbulence models for flow separation by multi-case computational fluid dynamics driven surrogate optimization</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2023-12</date><risdate>2023</risdate><volume>35</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In the field of data-driven turbulence modeling, the consistency of the a posteriori results and generalizability are the most critical aspects of new models. In this study, we combine a multi-case surrogate optimization technique with a progressive augmentation approach to enhance the performance of the popular k − ω shear stress transport (SST) turbulence model in the prediction of flow separation. We introduce a separation factor into the transport equation of a turbulent specific dissipation rate (ω) to correct the underestimation of the turbulent viscosity by the k − ω SST model in the case of flow separation for two-dimensional cases. The new model is optimized based on their performance on the training cases including periodic hills and curved backward-facing step flow. Simulation of the channel flow is likewise included in the optimization process to guarantee that the original performance of k − ω SST is preserved in the absence of separation. The new model is verified on multiple unseen cases with different Reynolds numbers and geometries. Results show a significant improvement in the prediction of the recirculation zone, velocity components, and distribution of the friction coefficient in both training and testing cases, where flow separation is expected. The performance of the new models on the test case with no separation shows that they preserve the successful performance of k − ω SST when flow separation is not expected.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0174470</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-8677-7723</orcidid><orcidid>https://orcid.org/0000-0001-9790-7335</orcidid><orcidid>https://orcid.org/0000-0002-6220-870X</orcidid><orcidid>https://orcid.org/0000-0003-3239-6612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2023-12, Vol.35 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_proquest_journals_2907546421
source AIP Journals Complete; Alma/SFX Local Collection
subjects Backward facing steps
Channel flow
Coefficient of friction
Computational fluid dynamics
Dissipation factor
Flow separation
Fluid flow
Optimization
Optimization techniques
Reynolds number
Shear stress
Training
Transport equations
Turbulence models
Turbulent flow
Two dimensional flow
title Progressive augmentation of turbulence models for flow separation by multi-case computational fluid dynamics driven surrogate optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A39%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progressive%20augmentation%20of%20turbulence%20models%20for%20flow%20separation%20by%20multi-case%20computational%20fluid%20dynamics%20driven%20surrogate%20optimization&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Amarloo,%20Ali&rft.date=2023-12&rft.volume=35&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0174470&rft_dat=%3Cproquest_cross%3E2907546421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907546421&rft_id=info:pmid/&rfr_iscdi=true