Fast and Robust Sparsity-Aware Block Diagonal Representation

The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2024, Vol.72, p.305-320
Hauptverfasser: Tastan, Aylin, Muma, Michael, Zoubir, Abdelhak M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 320
container_issue
container_start_page 305
container_title IEEE transactions on signal processing
container_volume 72
creator Tastan, Aylin
Muma, Michael
Zoubir, Abdelhak M.
description The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.
doi_str_mv 10.1109/TSP.2023.3343565
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2907543030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10365591</ieee_id><sourcerecordid>2907543030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-d5f1708b8b9ded15f34ec3143eef1eb2736ad13052b3fb05ae41a651095c785f3</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsFbvHjwEPKfOZHezCXiprVWhoLQVvC2bZCKpNRt3U6T_3i3tQeYw7_DeMO9j7BphhAj53Wr5Nkog4SPOBZepPGEDzAXGIFR6GjRIHstMfZyzC-_XAChEng7Y_cz4PjJtFS1ssQ1y2Rnnm34Xj3-No-hhY8uvaNqYT9uaTbSgzpGntjd9Y9tLdlabjaer4x6y99njavIcz1-fXibjeVwmmerjStaoICuyIq-oQllzQSVHwYlqpCJRPDUVcpBJwesCpCGBJpWhlSxVFuxDdnu42zn7syXf67XduvCP10kOSgoOYYYMDq7SWe8d1bpzzbdxO42g94x0YKT3jPSRUYjcHCINEf2z81TKHPkfZjth0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907543030</pqid></control><display><type>article</type><title>Fast and Robust Sparsity-Aware Block Diagonal Representation</title><source>IEEE Electronic Library (IEL)</source><creator>Tastan, Aylin ; Muma, Michael ; Zoubir, Abdelhak M.</creator><creatorcontrib>Tastan, Aylin ; Muma, Michael ; Zoubir, Abdelhak M.</creatorcontrib><description>The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3343565</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; affinity matrix ; Block diagonal representation ; Cluster analysis ; Clustering ; Data analysis ; Data models ; eigenvalues ; Eigenvalues and eigenfunctions ; Enumeration ; Indexes ; Laplace equations ; Linear functions ; Mathematical analysis ; Matrices (mathematics) ; Outliers (statistics) ; Representations ; Robustness ; Robustness (mathematics) ; similarity matrix ; Sparse matrices ; Sparsity ; subspace clustering ; Symmetric matrices</subject><ispartof>IEEE transactions on signal processing, 2024, Vol.72, p.305-320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-d5f1708b8b9ded15f34ec3143eef1eb2736ad13052b3fb05ae41a651095c785f3</cites><orcidid>0000-0002-7983-1944 ; 0000-0002-4409-7743 ; 0000-0003-2667-783X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10365591$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Tastan, Aylin</creatorcontrib><creatorcontrib>Muma, Michael</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M.</creatorcontrib><title>Fast and Robust Sparsity-Aware Block Diagonal Representation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.</description><subject>Affinity</subject><subject>affinity matrix</subject><subject>Block diagonal representation</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Data models</subject><subject>eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Enumeration</subject><subject>Indexes</subject><subject>Laplace equations</subject><subject>Linear functions</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Outliers (statistics)</subject><subject>Representations</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>similarity matrix</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>subspace clustering</subject><subject>Symmetric matrices</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsFbvHjwEPKfOZHezCXiprVWhoLQVvC2bZCKpNRt3U6T_3i3tQeYw7_DeMO9j7BphhAj53Wr5Nkog4SPOBZepPGEDzAXGIFR6GjRIHstMfZyzC-_XAChEng7Y_cz4PjJtFS1ssQ1y2Rnnm34Xj3-No-hhY8uvaNqYT9uaTbSgzpGntjd9Y9tLdlabjaer4x6y99njavIcz1-fXibjeVwmmerjStaoICuyIq-oQllzQSVHwYlqpCJRPDUVcpBJwesCpCGBJpWhlSxVFuxDdnu42zn7syXf67XduvCP10kOSgoOYYYMDq7SWe8d1bpzzbdxO42g94x0YKT3jPSRUYjcHCINEf2z81TKHPkfZjth0A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tastan, Aylin</creator><creator>Muma, Michael</creator><creator>Zoubir, Abdelhak M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7983-1944</orcidid><orcidid>https://orcid.org/0000-0002-4409-7743</orcidid><orcidid>https://orcid.org/0000-0003-2667-783X</orcidid></search><sort><creationdate>2024</creationdate><title>Fast and Robust Sparsity-Aware Block Diagonal Representation</title><author>Tastan, Aylin ; Muma, Michael ; Zoubir, Abdelhak M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-d5f1708b8b9ded15f34ec3143eef1eb2736ad13052b3fb05ae41a651095c785f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>affinity matrix</topic><topic>Block diagonal representation</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Data models</topic><topic>eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Enumeration</topic><topic>Indexes</topic><topic>Laplace equations</topic><topic>Linear functions</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Outliers (statistics)</topic><topic>Representations</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>similarity matrix</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>subspace clustering</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tastan, Aylin</creatorcontrib><creatorcontrib>Muma, Michael</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tastan, Aylin</au><au>Muma, Michael</au><au>Zoubir, Abdelhak M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Robust Sparsity-Aware Block Diagonal Representation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2024</date><risdate>2024</risdate><volume>72</volume><spage>305</spage><epage>320</epage><pages>305-320</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3343565</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7983-1944</orcidid><orcidid>https://orcid.org/0000-0002-4409-7743</orcidid><orcidid>https://orcid.org/0000-0003-2667-783X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2024, Vol.72, p.305-320
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_journals_2907543030
source IEEE Electronic Library (IEL)
subjects Affinity
affinity matrix
Block diagonal representation
Cluster analysis
Clustering
Data analysis
Data models
eigenvalues
Eigenvalues and eigenfunctions
Enumeration
Indexes
Laplace equations
Linear functions
Mathematical analysis
Matrices (mathematics)
Outliers (statistics)
Representations
Robustness
Robustness (mathematics)
similarity matrix
Sparse matrices
Sparsity
subspace clustering
Symmetric matrices
title Fast and Robust Sparsity-Aware Block Diagonal Representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Robust%20Sparsity-Aware%20Block%20Diagonal%20Representation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Tastan,%20Aylin&rft.date=2024&rft.volume=72&rft.spage=305&rft.epage=320&rft.pages=305-320&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3343565&rft_dat=%3Cproquest_ieee_%3E2907543030%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907543030&rft_id=info:pmid/&rft_ieee_id=10365591&rfr_iscdi=true