Fast and Robust Sparsity-Aware Block Diagonal Representation
The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applicat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on signal processing 2024, Vol.72, p.305-320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | |
container_start_page | 305 |
container_title | IEEE transactions on signal processing |
container_volume | 72 |
creator | Tastan, Aylin Muma, Michael Zoubir, Abdelhak M. |
description | The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance. |
doi_str_mv | 10.1109/TSP.2023.3343565 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2907543030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10365591</ieee_id><sourcerecordid>2907543030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-d5f1708b8b9ded15f34ec3143eef1eb2736ad13052b3fb05ae41a651095c785f3</originalsourceid><addsrcrecordid>eNpNkEFLw0AQhRdRsFbvHjwEPKfOZHezCXiprVWhoLQVvC2bZCKpNRt3U6T_3i3tQeYw7_DeMO9j7BphhAj53Wr5Nkog4SPOBZepPGEDzAXGIFR6GjRIHstMfZyzC-_XAChEng7Y_cz4PjJtFS1ssQ1y2Rnnm34Xj3-No-hhY8uvaNqYT9uaTbSgzpGntjd9Y9tLdlabjaer4x6y99njavIcz1-fXibjeVwmmerjStaoICuyIq-oQllzQSVHwYlqpCJRPDUVcpBJwesCpCGBJpWhlSxVFuxDdnu42zn7syXf67XduvCP10kOSgoOYYYMDq7SWe8d1bpzzbdxO42g94x0YKT3jPSRUYjcHCINEf2z81TKHPkfZjth0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907543030</pqid></control><display><type>article</type><title>Fast and Robust Sparsity-Aware Block Diagonal Representation</title><source>IEEE Electronic Library (IEL)</source><creator>Tastan, Aylin ; Muma, Michael ; Zoubir, Abdelhak M.</creator><creatorcontrib>Tastan, Aylin ; Muma, Michael ; Zoubir, Abdelhak M.</creatorcontrib><description>The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3343565</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Affinity ; affinity matrix ; Block diagonal representation ; Cluster analysis ; Clustering ; Data analysis ; Data models ; eigenvalues ; Eigenvalues and eigenfunctions ; Enumeration ; Indexes ; Laplace equations ; Linear functions ; Mathematical analysis ; Matrices (mathematics) ; Outliers (statistics) ; Representations ; Robustness ; Robustness (mathematics) ; similarity matrix ; Sparse matrices ; Sparsity ; subspace clustering ; Symmetric matrices</subject><ispartof>IEEE transactions on signal processing, 2024, Vol.72, p.305-320</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-d5f1708b8b9ded15f34ec3143eef1eb2736ad13052b3fb05ae41a651095c785f3</cites><orcidid>0000-0002-7983-1944 ; 0000-0002-4409-7743 ; 0000-0003-2667-783X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10365591$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids></links><search><creatorcontrib>Tastan, Aylin</creatorcontrib><creatorcontrib>Muma, Michael</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M.</creatorcontrib><title>Fast and Robust Sparsity-Aware Block Diagonal Representation</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.</description><subject>Affinity</subject><subject>affinity matrix</subject><subject>Block diagonal representation</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Data analysis</subject><subject>Data models</subject><subject>eigenvalues</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Enumeration</subject><subject>Indexes</subject><subject>Laplace equations</subject><subject>Linear functions</subject><subject>Mathematical analysis</subject><subject>Matrices (mathematics)</subject><subject>Outliers (statistics)</subject><subject>Representations</subject><subject>Robustness</subject><subject>Robustness (mathematics)</subject><subject>similarity matrix</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>subspace clustering</subject><subject>Symmetric matrices</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkEFLw0AQhRdRsFbvHjwEPKfOZHezCXiprVWhoLQVvC2bZCKpNRt3U6T_3i3tQeYw7_DeMO9j7BphhAj53Wr5Nkog4SPOBZepPGEDzAXGIFR6GjRIHstMfZyzC-_XAChEng7Y_cz4PjJtFS1ssQ1y2Rnnm34Xj3-No-hhY8uvaNqYT9uaTbSgzpGntjd9Y9tLdlabjaer4x6y99njavIcz1-fXibjeVwmmerjStaoICuyIq-oQllzQSVHwYlqpCJRPDUVcpBJwesCpCGBJpWhlSxVFuxDdnu42zn7syXf67XduvCP10kOSgoOYYYMDq7SWe8d1bpzzbdxO42g94x0YKT3jPSRUYjcHCINEf2z81TKHPkfZjth0A</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tastan, Aylin</creator><creator>Muma, Michael</creator><creator>Zoubir, Abdelhak M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7983-1944</orcidid><orcidid>https://orcid.org/0000-0002-4409-7743</orcidid><orcidid>https://orcid.org/0000-0003-2667-783X</orcidid></search><sort><creationdate>2024</creationdate><title>Fast and Robust Sparsity-Aware Block Diagonal Representation</title><author>Tastan, Aylin ; Muma, Michael ; Zoubir, Abdelhak M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-d5f1708b8b9ded15f34ec3143eef1eb2736ad13052b3fb05ae41a651095c785f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Affinity</topic><topic>affinity matrix</topic><topic>Block diagonal representation</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Data analysis</topic><topic>Data models</topic><topic>eigenvalues</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Enumeration</topic><topic>Indexes</topic><topic>Laplace equations</topic><topic>Linear functions</topic><topic>Mathematical analysis</topic><topic>Matrices (mathematics)</topic><topic>Outliers (statistics)</topic><topic>Representations</topic><topic>Robustness</topic><topic>Robustness (mathematics)</topic><topic>similarity matrix</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>subspace clustering</topic><topic>Symmetric matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tastan, Aylin</creatorcontrib><creatorcontrib>Muma, Michael</creatorcontrib><creatorcontrib>Zoubir, Abdelhak M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tastan, Aylin</au><au>Muma, Michael</au><au>Zoubir, Abdelhak M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast and Robust Sparsity-Aware Block Diagonal Representation</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2024</date><risdate>2024</risdate><volume>72</volume><spage>305</spage><epage>320</epage><pages>305-320</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>The block diagonal structure of an affinity matrix is a commonly desired property in cluster analysis because it represents clusters of feature vectors by non-zero coefficients that are concentrated in blocks. However, recovering a block diagonal affinity matrix is challenging in real-world applications, in which the data may be subject to outliers and heavy-tailed noise that obscure the hidden cluster structure. To address this issue, we first analyze the effect of different fundamental outlier types in graph-based cluster analysis. A key idea that simplifies the analysis is to introduce a vector that represents a block diagonal matrix as a piece-wise linear function of the similarity coefficients that form the affinity matrix. We reformulate the problem as a robust piece-wise linear fitting problem and propose a Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method, which jointly estimates cluster memberships and the number of blocks. Comprehensive experiments on a variety of real-world applications demonstrate the effectiveness of FRS-BDR in terms of clustering accuracy, robustness against corrupted features, computation time and cluster enumeration performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3343565</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7983-1944</orcidid><orcidid>https://orcid.org/0000-0002-4409-7743</orcidid><orcidid>https://orcid.org/0000-0003-2667-783X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2024, Vol.72, p.305-320 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_journals_2907543030 |
source | IEEE Electronic Library (IEL) |
subjects | Affinity affinity matrix Block diagonal representation Cluster analysis Clustering Data analysis Data models eigenvalues Eigenvalues and eigenfunctions Enumeration Indexes Laplace equations Linear functions Mathematical analysis Matrices (mathematics) Outliers (statistics) Representations Robustness Robustness (mathematics) similarity matrix Sparse matrices Sparsity subspace clustering Symmetric matrices |
title | Fast and Robust Sparsity-Aware Block Diagonal Representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20and%20Robust%20Sparsity-Aware%20Block%20Diagonal%20Representation&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Tastan,%20Aylin&rft.date=2024&rft.volume=72&rft.spage=305&rft.epage=320&rft.pages=305-320&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3343565&rft_dat=%3Cproquest_ieee_%3E2907543030%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907543030&rft_id=info:pmid/&rft_ieee_id=10365591&rfr_iscdi=true |