Underwater Lidar: Remote Sensing in Strongly Scattering Media

A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm 2 ). The new princi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of wave phenomena 2023-12, Vol.31 (6), p.406-411
Hauptverfasser: Pershin, S. M., Bunkin, A. F., Zavozin, V. A., Grishin, M. Ya, Makarov, V. S., Titovets, P. A., Fedyuk, M. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 411
container_issue 6
container_start_page 406
container_title Physics of wave phenomena
container_volume 31
creator Pershin, S. M.
Bunkin, A. F.
Zavozin, V. A.
Grishin, M. Ya
Makarov, V. S.
Titovets, P. A.
Fedyuk, M. O.
description A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm 2 ). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd 3+ :YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~10 6 , serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.
doi_str_mv 10.3103/S1541308X23060080
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2907281755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2907281755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-e88c23cf14de1305672d6f51aff886d2dfc1a1165e694603db79688e54ebf57d3</originalsourceid><addsrcrecordid>eNp1UEtLw0AQXkTBWv0B3gKeozO72c1G8CDFF1QEY6G3sM3OlpQ2qbsp0n_vhgoexNMM8z3mm2HsEuFaIIibEmWGAvScC1AAGo7YCAuRpRry-XHsI5wO-Ck7C2EFIGWRqRG7m7WW_JfpySfTxhp_m7zTpuspKakNTbtMmjYpe9-1y_U-KWvTR-YwfiXbmHN24sw60MVPHbPZ48PH5Dmdvj29TO6nac2V7lPSuuaidphZiiGlyrlVTqJxTmtluXU1GkQlScVQIOwiL5TWJDNaOJlbMWZXB9-t7z53FPpq1e18G1dWvICca8yljCw8sGrfheDJVVvfbIzfVwjV8KXqz5eihh80YTucRf7X-X_RNy81aEo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2907281755</pqid></control><display><type>article</type><title>Underwater Lidar: Remote Sensing in Strongly Scattering Media</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pershin, S. M. ; Bunkin, A. F. ; Zavozin, V. A. ; Grishin, M. Ya ; Makarov, V. S. ; Titovets, P. A. ; Fedyuk, M. O.</creator><creatorcontrib>Pershin, S. M. ; Bunkin, A. F. ; Zavozin, V. A. ; Grishin, M. Ya ; Makarov, V. S. ; Titovets, P. A. ; Fedyuk, M. O.</creatorcontrib><description>A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm 2 ). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd 3+ :YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~10 6 , serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.</description><identifier>ISSN: 1541-308X</identifier><identifier>EISSN: 1934-807X</identifier><identifier>DOI: 10.3103/S1541308X23060080</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustics ; Acoustics and Optics of Open Reservoirs ; Autonomous underwater vehicles ; Avalanche diodes ; Laser beams ; Laser range finders ; Lasers ; Lidar ; Photodiodes ; Photon avalanches ; Physics ; Physics and Astronomy ; Position measurement ; Pulse repetition rate ; Quantum Optics ; Radiation ; Remote sensing ; Scattering ; Semiconductor lasers ; Signal to noise ratio ; YAG lasers</subject><ispartof>Physics of wave phenomena, 2023-12, Vol.31 (6), p.406-411</ispartof><rights>Allerton Press, Inc. 2023. ISSN 1541-308X, Physics of Wave Phenomena, 2023, Vol. 31, No. 6, pp. 406–411. © Allerton Press, Inc., 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-e88c23cf14de1305672d6f51aff886d2dfc1a1165e694603db79688e54ebf57d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1541308X23060080$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1541308X23060080$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Pershin, S. M.</creatorcontrib><creatorcontrib>Bunkin, A. F.</creatorcontrib><creatorcontrib>Zavozin, V. A.</creatorcontrib><creatorcontrib>Grishin, M. Ya</creatorcontrib><creatorcontrib>Makarov, V. S.</creatorcontrib><creatorcontrib>Titovets, P. A.</creatorcontrib><creatorcontrib>Fedyuk, M. O.</creatorcontrib><title>Underwater Lidar: Remote Sensing in Strongly Scattering Media</title><title>Physics of wave phenomena</title><addtitle>Phys. Wave Phen</addtitle><description>A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm 2 ). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd 3+ :YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~10 6 , serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.</description><subject>Acoustics</subject><subject>Acoustics and Optics of Open Reservoirs</subject><subject>Autonomous underwater vehicles</subject><subject>Avalanche diodes</subject><subject>Laser beams</subject><subject>Laser range finders</subject><subject>Lasers</subject><subject>Lidar</subject><subject>Photodiodes</subject><subject>Photon avalanches</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Position measurement</subject><subject>Pulse repetition rate</subject><subject>Quantum Optics</subject><subject>Radiation</subject><subject>Remote sensing</subject><subject>Scattering</subject><subject>Semiconductor lasers</subject><subject>Signal to noise ratio</subject><subject>YAG lasers</subject><issn>1541-308X</issn><issn>1934-807X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLw0AQXkTBWv0B3gKeozO72c1G8CDFF1QEY6G3sM3OlpQ2qbsp0n_vhgoexNMM8z3mm2HsEuFaIIibEmWGAvScC1AAGo7YCAuRpRry-XHsI5wO-Ck7C2EFIGWRqRG7m7WW_JfpySfTxhp_m7zTpuspKakNTbtMmjYpe9-1y_U-KWvTR-YwfiXbmHN24sw60MVPHbPZ48PH5Dmdvj29TO6nac2V7lPSuuaidphZiiGlyrlVTqJxTmtluXU1GkQlScVQIOwiL5TWJDNaOJlbMWZXB9-t7z53FPpq1e18G1dWvICca8yljCw8sGrfheDJVVvfbIzfVwjV8KXqz5eihh80YTucRf7X-X_RNy81aEo</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Pershin, S. M.</creator><creator>Bunkin, A. F.</creator><creator>Zavozin, V. A.</creator><creator>Grishin, M. Ya</creator><creator>Makarov, V. S.</creator><creator>Titovets, P. A.</creator><creator>Fedyuk, M. O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Underwater Lidar: Remote Sensing in Strongly Scattering Media</title><author>Pershin, S. M. ; Bunkin, A. F. ; Zavozin, V. A. ; Grishin, M. Ya ; Makarov, V. S. ; Titovets, P. A. ; Fedyuk, M. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-e88c23cf14de1305672d6f51aff886d2dfc1a1165e694603db79688e54ebf57d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acoustics</topic><topic>Acoustics and Optics of Open Reservoirs</topic><topic>Autonomous underwater vehicles</topic><topic>Avalanche diodes</topic><topic>Laser beams</topic><topic>Laser range finders</topic><topic>Lasers</topic><topic>Lidar</topic><topic>Photodiodes</topic><topic>Photon avalanches</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Position measurement</topic><topic>Pulse repetition rate</topic><topic>Quantum Optics</topic><topic>Radiation</topic><topic>Remote sensing</topic><topic>Scattering</topic><topic>Semiconductor lasers</topic><topic>Signal to noise ratio</topic><topic>YAG lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pershin, S. M.</creatorcontrib><creatorcontrib>Bunkin, A. F.</creatorcontrib><creatorcontrib>Zavozin, V. A.</creatorcontrib><creatorcontrib>Grishin, M. Ya</creatorcontrib><creatorcontrib>Makarov, V. S.</creatorcontrib><creatorcontrib>Titovets, P. A.</creatorcontrib><creatorcontrib>Fedyuk, M. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Physics of wave phenomena</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pershin, S. M.</au><au>Bunkin, A. F.</au><au>Zavozin, V. A.</au><au>Grishin, M. Ya</au><au>Makarov, V. S.</au><au>Titovets, P. A.</au><au>Fedyuk, M. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater Lidar: Remote Sensing in Strongly Scattering Media</atitle><jtitle>Physics of wave phenomena</jtitle><stitle>Phys. Wave Phen</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>31</volume><issue>6</issue><spage>406</spage><epage>411</epage><pages>406-411</pages><issn>1541-308X</issn><eissn>1934-807X</eissn><abstract>A lidar backscattering signal from an opaque target object, passed through a 9-m water layer with scattering meshes on the laser beam path, has been detected (for the first time, to the best of our knowledge) when sensing by pulses with eye-safe radiation energy density (~1 μJ/cm 2 ). The new principle of laser sensing makes it possible to measure the position of meshes on the lidar path, in contrast to conventional laser rangefinders, which measure the distance to only the first target. The lidar has been developed based on a pulsed diode-pumped Nd 3+ :YAG laser (532 nm, 3 ns, 2 µJ/pulse, pulse repetition rate 4 kHz) and gated single-photon avalanche photodiode (SPAD) with a gain up to ~10 6 , serving as a detector. The large gain of the detector and suppression of its noise by gating ensured a signal-to-noise ratio of ≈35 for the target signal, which provides an estimate of underwater sensing range up to 30 m, according to the 3σ detection criterion. Compact lidars based on diode lasers (~1 µJ/pulse) with a radiation wavelength (~450 nm) in the spectral range of minimum losses in water and the increase in the safety of manned and unmanned underwater vehicles at early detection of nets (invisible for sonars) by a lidar are discussed.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1541308X23060080</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1541-308X
ispartof Physics of wave phenomena, 2023-12, Vol.31 (6), p.406-411
issn 1541-308X
1934-807X
language eng
recordid cdi_proquest_journals_2907281755
source SpringerLink Journals - AutoHoldings
subjects Acoustics
Acoustics and Optics of Open Reservoirs
Autonomous underwater vehicles
Avalanche diodes
Laser beams
Laser range finders
Lasers
Lidar
Photodiodes
Photon avalanches
Physics
Physics and Astronomy
Position measurement
Pulse repetition rate
Quantum Optics
Radiation
Remote sensing
Scattering
Semiconductor lasers
Signal to noise ratio
YAG lasers
title Underwater Lidar: Remote Sensing in Strongly Scattering Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20Lidar:%20Remote%20Sensing%20in%20Strongly%20Scattering%20Media&rft.jtitle=Physics%20of%20wave%20phenomena&rft.au=Pershin,%20S.%20M.&rft.date=2023-12-01&rft.volume=31&rft.issue=6&rft.spage=406&rft.epage=411&rft.pages=406-411&rft.issn=1541-308X&rft.eissn=1934-807X&rft_id=info:doi/10.3103/S1541308X23060080&rft_dat=%3Cproquest_cross%3E2907281755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2907281755&rft_id=info:pmid/&rfr_iscdi=true